Evolving Role and Future Directions of Natural Language Processing in Gastroenterology

Abstract

In line with the current trajectory of healthcare reform, significant emphasis has been placed on improving the utilization of data collected during a clinical encounter. Although the structured fields of electronic health records have provided a convenient foundation on which to begin such efforts, it was well understood that a substantial portion of relevant information is confined in the free-text narratives documenting care. Unfortunately, extracting meaningful information from such narratives is a non-trivial task, traditionally requiring significant manual effort. Today, computational approaches from a field known as Natural Language Processing (NLP) are poised to make a transformational impact in the analysis and utilization of these documents across healthcare practice and research, particularly in procedure-heavy sub-disciplines such as gastroenterology (GI). As such, this manuscript provides a clinically focused review of NLP systems in GI practice. It begins with a detailed synopsis around the state of NLP techniques, presenting state-of-the-art methods and typical use cases in both clinical settings and across other domains. Next, it will present a robust literature review around current applications of NLP within four prominent areas of gastroenterology including endoscopy, inflammatory bowel disease, pancreaticobiliary, and liver diseases. Finally, it concludes with a discussion of open problems and future opportunities of this technology in the field of gastroenterology and health care as a whole.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Meystre SM, Savova GK, Kipper-Schuler KC, Hurdle JF. Extracting information from textual documents in the electronic health record: a review of recent research. Yearb Med Inform. 2008;17:128–144.

    Article  Google Scholar 

  2. 2.

    Demner-Fushman D, Chapman WW, McDonald CJ. What can natural language processing do for clinical decision support? J Biomed Inform. 2009;42:760–772.

    PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Leaman R, Khare R, Lu Z. Challenges in clinical natural language processing for automated disorder normalization. J Biomed Inform. 2015;57:28–37.

    PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Velupillai S, Suominen H, Liakata M, et al. Using clinical Natural Language Processing for health outcomes research: overview and actionable suggestions for future advances. J Biomed Inform. 2018;88:11–19.

    PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Névéol A, Dalianis H, Velupillai S, Savova G, Zweigenbaum P. Clinical natural language processing in languages other than english: opportunities and challenges. J Biomed Semant. 2018;9:12.

    Article  Google Scholar 

  6. 6.

    Carrell DS, Schoen RE, Leffler DA, et al. Challenges in adapting existing clinical natural language processing systems to multiple, diverse health care settings. J Am Med Inform Assoc JAMIA. 2017;24:986–991.

    PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Zozus MN, Pieper C, Johnson CM, et al. Factors affecting accuracy of data abstracted from medical records. PloS One. 2015;10:e0138649.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  8. 8.

    Wang Y, Wang L, Rastegar-Mojarad M, et al. Clinical information extraction applications: a literature review. J Biomed Inform. 2018;77:34–49.

    PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Luque C, Luna JM, Luque M, Ventura S. An advanced review on text mining in medicine. WIREs Data Min Knowl Discov. 2019;9:e1302.

    Google Scholar 

  10. 10.

    Simpson MS, Demner-Fushman D. Biomedical text mining: a survey of recent progress. In: Aggarwal CC, Zhai C, eds. Mining Text Data. Boston: Springer; 2012:465–517.

    Google Scholar 

  11. 11.

    Belskaja IK. Machine translation of languages. Research. 1957;10:383–389.

    Google Scholar 

  12. 12.

    Manning CD, Raghavan P, Schütze H. Introduction to Information Retrieval. Cambridge: Cambridge University Press; 2008.

    Google Scholar 

  13. 13.

    Jurafsky D, Martin JH. Speech and language processing: an introduction to natural language processing, computational linguistics, and speech recognition. Upper Saddle River: Pearson Prentice Hall; 2009.

    Google Scholar 

  14. 14.

    Calijorne Soares MA, Parreiras FS. A literature review on question answering techniques, paradigms and systems. J King Saud Univ Comput Inf Sci. 2018. https://doi.org/10.1016/j.jksuci.2018.08.005.

    Article  Google Scholar 

  15. 15.

    Lloret E. Palomar M Text summarisation in progress: a literature review. Artif Intell Rev. 2012;37:1–41.

    Article  Google Scholar 

  16. 16.

    Gentzkow M, Kelly B, Taddy M. Text as data. J Econ Lit.. 2019;57:535–574.

    Article  Google Scholar 

  17. 17.

    Crawford M, Khoshgoftaar TM, Prusa JD, Richter AN, Al Najada H. Survey of review spam detection using machine learning techniques. J Big Data. 2015;2:23.

    Article  Google Scholar 

  18. 18.

    Liddy ED. Natural language processing. In: Drake MA, ed. Encyclopedia of Library and Information Science, 2nd Ed. New York: Marcel Decker, Inc.; 2001.

    Google Scholar 

  19. 19.

    Blei DM. Probabilistic topic models. Commun ACM. 2012;55:77–84.

    Article  Google Scholar 

  20. 20.

    Manning CD. Part-of-speech tagging from 97% to 100%: Is it time for some linguistics? In: Gelbukh AF, ed. Computational Linguistics and Intelligent Text Processing. Berlin: Springer; 2011:171–189.

    Google Scholar 

  21. 21.

    Ferraro JP, Daumé H, DuVall SL, Chapman WW, Harkema H, Haug PJ. Improving performance of natural language processing part-of-speech tagging on clinical narratives through domain adaptation. J Am Med Inform Assoc JAMIA. 2013;20:931–939.

    PubMed  Article  Google Scholar 

  22. 22.

    Goyal A, Gupta V, Kumar M. Recent Named Entity Recognition and Classification techniques: a systematic review. Comput Sci Rev. 2018;29:21–43.

    Article  Google Scholar 

  23. 23.

    Kübler S, McDonald R, Nivre J. Dependency parsing. Synth Lect Hum Lang Technol. 2008;2:1–127.

    Google Scholar 

  24. 24.

    Shen W, Wang J, Han J. Entity linking with a knowledge base: issues, techniques, and solutions. IEEE Trans Knowl Data Eng. 2015;27:443–460.

    Article  Google Scholar 

  25. 25.

    Giatsoglou M, Vozalis MG, Diamantaras K, Vakali A, Sarigiannidis G, Chatzisavvas KCh. Sentiment analysis leveraging emotions and word embeddings. Expert Syst Appl. 2017;69:214–224.

    Article  Google Scholar 

  26. 26.

    Mitra B, Craswell N. Neural text embeddings for information retrieval. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining. Association for Computing Machinery, New York, NY, USA; 2017:813–814.

  27. 27.

    Bengio S, Heigold G. Word embeddings for speech recognition. In: Interspeech; 2014:1053–1057.

  28. 28.

    Le Q, Mikolov T. Distributed representations of sentences and documents. In: Proceedings of the 31st International Conference on International Conference on Machine Learning; volume 32; 2014.

  29. 29.

    Sennrich R, Haddow B, Birch A. Neural machine translation of rare words with subword units. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Berlin, Germany: Association for Computational Linguistics; 2016:1715–1725.

  30. 30.

    Kim Y, Jernite Y, Sontag D, Rush AM. Character-aware neural language models. CoRR, 2015.

  31. 31.

    Wieting J, Bansal M, Gimpel K, Livescu K. Charagram: embedding words and sentences via character n-grams. In: EMNLP. 2016.

  32. 32.

    Assale M, Dui LG, Cina A, Seveso A, Cabitza F. The revival of the notes field: leveraging the unstructured content in electronic health records. Front Med. 2019. https://doi.org/10.3389/fmed.2019.00066.

    Article  Google Scholar 

  33. 33.

    Nadkarni PM, Ohno-Machado L, Chapman WW. Natural language processing: an introduction. J Am Med Inform Assoc JAMIA. 2011;18:544–551.

    PubMed  Article  Google Scholar 

  34. 34.

    Cai T, Giannopoulos AA, Yu S, et al. Natural language processing technologies in radiology research and clinical applications. Radiogr Rev Publ Radiol Soc N Am Inc. 2016;36:176–191.

    Google Scholar 

  35. 35.

    Yim W-W, Yetisgen M, Harris WP, Kwan SW. Natural language processing in oncology: a review. JAMA Oncol. 2016;2:797–804.

    PubMed  Article  Google Scholar 

  36. 36.

    Pons E, Braun LMM, Hunink MGM, Kors JA. Natural language processing in radiology: a systematic review. Radiology. 2016;279:329–343.

    Article  Google Scholar 

  37. 37.

    Murff HJ, FitzHenry F, Matheny ME, et al. Automated identification of postoperative complications within an electronic medical record using natural language processing. JAMA. 2011;306:848–855.

    CAS  PubMed  Google Scholar 

  38. 38.

    Vo E, Davila JA, Hou J, et al. Differentiation of ileostomy from colostomy procedures: assessing the accuracy of current procedural terminology codes and the utility of natural language processing. Surgery. 2013;154:411–417.

    PubMed  Article  Google Scholar 

  39. 39.

    Elkin PL, Froehling DA, Wahner-Roedler DL, Brown SH, Bailey KR. Comparison of natural language processing biosurveillance methods for identifying influenza from encounter notes. Ann Intern Med. 2012;156:11–18.

    PubMed  Article  Google Scholar 

  40. 40.

    Calvo RA, Milne DN, Hussain MS, Christensen H. Natural language processing in mental health applications using non-clinical texts. Nat Lang Eng. 2017;23:649–685.

    Article  Google Scholar 

  41. 41.

    Conway M, O’Connor D. Social media, big data, and mental health: current advances and ethical implications. Curr Opin Psychol. 2016;9:77–82.

    PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Sun W, Cai Z, Li Y, Liu, F, Fang S, Wang G. Data processing and text mining technologies on electronic medical records: a review. J Healthc Eng. 2018;2018:4302425.

    PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Bodenreider O. The unified medical language system (UMLS): integrating biomedical terminology. Nucleic Acids Res. 2004;32:267–270.

    Article  CAS  Google Scholar 

  44. 44.

    McCray AT. An upper-level ontology for the biomedical domain. Int J Genom. 2003;4:80–84.

    Google Scholar 

  45. 45.

    Zhang Y, Chen Q, Yang Z, Lin H, Lu Z. BioWordVec, improving biomedical word embeddings with subword information and MeSH. Sci Data. 2019. https://doi.org/10.1038/s41597-019-0055-0.

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Gero Z, Ho J. PMCVec: distributed phrase representation for biomedical text processing. J Biomed Inform. 2019;3:100047.

    Google Scholar 

  47. 47.

    Bai T, Chanda AK, Egleston BL, Vucetic S. EHR phenotyping via jointly embedding medical concepts and words into a unified vector space. BMC Med Inform Decis Mak. 2018;18:123.

    PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Liu K, Hogan WR, Crowley RS. Natural Language Processing methods and systems for biomedical ontology learning. J Biomed Inform. 2011;44:163–179.

    PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Feczko PJ, Ackerman LV, Halpert RD, Simms SM. A computer-based gastrointestinal information management system. Radiology. 1984;152:297–300.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Rex DK, Schoenfeld PS, Cohen J, et al. Quality indicators for colonoscopy. Am J Gastroenterol. 2015;110:72–90.

    PubMed  Article  Google Scholar 

  51. 51.

    Corley DA, Jensen CD, Marks AR, et al. Adenoma detection rate and risk of colorectal cancer and death. N Engl J Med. 2014;370:1298–1306.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Barclay RL, Vicari JJ, Doughty AS, Johanson JF, Greenlaw RL. Colonoscopic withdrawal times and adenoma detection during screening colonoscopy. N Engl J Med. 2006;355:2533–2541.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Adler A, Wegscheider K, Lieberman D, et al. Factors determining the quality of screening colonoscopy: a prospective study on adenoma detection rates, from 12,134 examinations (Berlin colonoscopy project 3, BECOP-3). Gut. 2013;62:236–241.

    PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Rex DK. Who is the best colonoscopist? Gastrointest Endosc. 2007;65:145–150.

    PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Pike IM. Quality improvement in gastroenterology: a US perspective. Nat Clin Pract Gastroenterol Hepatol. 2008;5:550–551.

    PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Imler TD, Morea J, Kahi C, et al. Multi-center colonoscopy quality measurement utilizing natural language processing. Am J Gastroenterol. 2015;110:543–552.

    PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Imler TD, Morea J, Kahi C, Imperiale TF. Natural language processing accurately categorizes findings from colonoscopy and pathology reports. Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc. 2013;11:689–694.

    Google Scholar 

  58. 58.

    Mehrotra A, Dellon ES, Schoen RE, et al. Applying a natural language processing tool to electronic health records to assess performance on colonoscopy quality measures. Gastrointest Endosc. 2012;75:1233–1239.

    PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Harkema H, Chapman WW, Saul M, Dellon ES, Schoen RE, Mehrotra A. Developing a natural language processing application for measuring the quality of colonoscopy procedures. J Am Med Inform Assoc JAMIA. 2011;18:i150–i156.

    PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Gawron AJ, Thompson WK, Keswani RN, Rasmussen LV, Kho AN. Anatomic and advanced adenoma detection rates as quality metrics determined via natural language processing. Am J Gastroenterol. 2014;109:1844–1849.

    PubMed  Article  Google Scholar 

  61. 61.

    Lee JK, Jensen CD, Levin TR, et al. Accurate identification of colonoscopy quality and polyp findings using natural language processing. J Clin Gastroenterol. 2019;53:e25–e30.

    PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Raju GS, Lum PJ, Slack RS, et al. Natural language processing as an alternative to manual reporting of colonoscopy quality metrics. Gastrointest Endosc. 2015;82:512–519.

    PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Deutsch JC. Colonoscopy quality, quality measures, and a natural language processing tool for electronic health records. Gastrointest Endosc. 2012;75:1240–1242.

    PubMed  Article  Google Scholar 

  64. 64.

    Marcondes FO, Gourevitch RA, Schoen RE, Crockett SD, Morris M, Mehrotra A. Adenoma detection rate falls at the end of the day in a large multi-site sample. Dig Dis Sci. 2018;63:856–859. https://doi.org/10.1007/s10620-018-4947-1.

    Article  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Patel VD, Thompson WK, Lapin BR, Goldstein JL, Yen EF. Screening colonoscopy withdrawal time threshold for adequate proximal serrated polyp detection rate. Dig Dis Sci. 2018;63:3084–3090. https://doi.org/10.1007/s10620-018-5187-0.

    Article  PubMed  Google Scholar 

  66. 66.

    Abdul-Baki H, Schoen RE, Dean K, et al. Public reporting of colonoscopy quality is associated with an increase in endoscopist adenoma detection rate. Gastrointest Endosc. 2015;82:676–682.

    PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Mehrotra A, Morris M, Gourevitch RA, et al. Physician characteristics associated with higher adenoma detection rate. Gastrointest Endosc. 2018;87:778–786.

    PubMed  Article  Google Scholar 

  68. 68.

    Crockett SD, Gourevitch RA, Morris M, et al. Endoscopist factors that influence serrated polyp detection: a multicenter study. Endoscopy. 2018;50:984–992.

    PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Gourevitch RA, Rose S, Crockett SD, et al. Variation in pathologist classification of colorectal adenomas and serrated polyps. Am J Gastroenterol. 2018;113:431–439.

    PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    Hong SN, Son HJ, Choi SK, et al. A prediction model for advanced colorectal neoplasia in an asymptomatic screening population. PloS One. 2017;12:e0181040.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  71. 71.

    Blumenthal DM, Singal G, Mangla SS, Macklin EA, Chung DC. Predicting non-adherence with outpatient colonoscopy using a novel electronic tool that measures prior non-adherence. J Gen Intern Med. 2015;30:724–731.

    PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Thrift AP, Natarajan Y, Mansour NM, et al. Tu1117—using natural language processing to accurately identify dysplasia in pathology reports for patients with Barrett’s Esophagus. Gastroenterology. 2018;154:896–897.

    Google Scholar 

  73. 73.

    Hou JK, Soysal E, Moon S, et al. Su1815 natural language processing accurately identifies colorectal dysplasia in a national cohort of veterans with inflammatory bowel disease. Gastroenterology. 2016;150:S560–S561.

    Article  Google Scholar 

  74. 74.

    Ananthakrishnan AN, Cai T, Cheng S-C, et al. Tu1276 improving case definition of Crohn’s disease and ulcerative colitis in electronic medical records using natural language processing—a novel informatics approach. Gastroenterology. 2012;142:S-791.

    Article  Google Scholar 

  75. 75.

    Cai T, Lin T-C, Bond A, et al. The association between arthralgia and Vedolizumab using natural language processing. Inflamm Bowel Dis. 2018;24:2242–2246.

    PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Hou JK, Chang M, Nguyen T, et al. Automated identification of surveillance colonoscopy in inflammatory bowel disease using natural language processing. Dig Dis Sci. 2013;58:936–941. https://doi.org/10.1007/s10620-012-2433-8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. 77.

    ASGE Standards of Practice Committee, Anderson MA, Fisher L, et al. Complications of ERCP. Gastrointest Endosc. 2012;75:467–473.

    Article  Google Scholar 

  78. 78.

    Imler TD, Sherman S, Imperiale TF, et al. Provider-specific quality measurement for ERCP using natural language processing. Gastrointest Endosc. 2018;87:164–173.

    PubMed  Article  Google Scholar 

  79. 79.

    Al-Haddad MA, Friedlin J, Kesterson J, Waters JA, Aguilar-Saavedra JR, Schmidt CM. Natural language processing for the development of a clinical registry: a validation study in intraductal papillary mucinous neoplasms. HPB. 2010;12:688–695.

    PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Mehrabi S, Schmidt CM, Waters JA, et al. An efficient pancreatic cyst identification methodology using natural language processing. Stud Health Technol Inform. 2013;192:822–826.

    PubMed  PubMed Central  Google Scholar 

  81. 81.

    Chang EK, Yu CY, Clarke R, et al. Mo1050 using an automated diagnostic algorithm that utilizes electronic health records and natural language processing to define a population with cirrhosis. Gastroenterology.. 2015;148:S-1074.

    Article  Google Scholar 

  82. 82.

    Kung R, Ma A, Dever JB, et al. Mo1043 a natural language processing algorithm for identification of patients with cirrhosis from electronic medical records. Gastroenterology. 2015;148:1071–1072.

    Article  Google Scholar 

  83. 83.

    Corey KE, Kartoun U, Zheng H, Shaw SY. Development and validation of an algorithm to identify nonalcoholic fatty liver disease in the electronic medical record. Dig Dis Sci. 2016;61:913–919. https://doi.org/10.1007/s10620-015-3952-x.

    Article  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Sada Y, Hou J, Richardson P, El-Serag H, Davila J. Validation of case finding algorithms for hepatocellular cancer from administrative data and electronic health records using natural language processing. Med Care. 2016;54:e9–e14.

    PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Koola JD, Davis SE, Al-Nimri O, et al. Development of an automated phenotyping algorithm for hepatorenal syndrome. J Biomed Inform. 2018;80:87–95.

    PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Imler TD, Ring N, Crabb DW. Su1403 medical, social, and legal risks to predict alcoholic liver disease using natural language processing and advanced analytics. Gastroenterology. 2015;148:S-499.

    Article  Google Scholar 

  87. 87.

    Jha AK. The promise of electronic records: around the corner or down the road? JAMA. 2011;306:880–881.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  88. 88.

    Imler TD, Morea J, Imperiale TF. Clinical decision support with natural language processing facilitates determination of colonoscopy surveillance intervals. Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc. 2014;12:1130–1136.

    Google Scholar 

  89. 89.

    Bhat S, Zahorian T, Robert R, Farraye FA. Advocating for patients with inflammatory bowel disease: how to navigate the prior authorization process. Inflamm Bowel Dis. 2019;25:1621–1628.

    PubMed  Article  PubMed Central  Google Scholar 

  90. 90.

    Walsh SH. The clinician’s perspective on electronic health records and how they can affect patient care. BMJ. 2004;328:1184–1187.

    PubMed  PubMed Central  Article  Google Scholar 

  91. 91.

    Coiera E. When conversation is better than computation. J Am Med Inform Assoc JAMIA. 2000;7:277–286.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  92. 92.

    Maybury M. Advances in Automatic Text Summarization. New York: MIT Press; 1999.

    Google Scholar 

  93. 93.

    Friedman C, Hripcsak G. Natural language processing and its future in medicine. Acad Med. 1999;74:890–895.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  94. 94.

    Ni Y, Wright J, Perentesis J, et al. Increasing the efficiency of trial-patient matching: automated clinical trial eligibility Pre-screening for pediatric oncology patients. BMC Med Inform Decis Mak. 2015. https://doi.org/10.1186/s12911-015-0149-3.

    Article  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Trugenberger CA, Wälti C, Peregrim D, Sharp ME, Bureeva S. Discovery of novel biomarkers and phenotypes by semantic technologies. BMC Bioinform. 2013;14:51.

    Article  Google Scholar 

  96. 96.

    Coppersmith G, Leary R, Crutchley P, Fine A. Natural language processing of social media as screening for suicide risk. Biomed Inform Insights. 2018. https://doi.org/10.1177/1178222618792860.

    Article  PubMed  PubMed Central  Google Scholar 

  97. 97.

    McCoy AB, Wright A, Eysenbach G, et al. State of the art in clinical informatics: evidence and examples. Yearb Med Inform. 2013;8:13–19.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  98. 98.

    Zheng X, Feng J, Chen Y, Peng H, Zhang W. Learning context—specific word/character embeddings. In: Proceedings of AAAI Conference on Artificial Intelligence; 2017:3393–3399.

  99. 99.

    Li P, Bing L, Lam W, Li H, Liao Y. Reader-aware multi-document summarization via sparse coding. In: IJCAI; 2015.

  100. 100.

    Forbush TB, Gundlapalli AV, Palmer MN, et al. Sitting on Pins and needles: characterization of symptom descriptions in clinical notes. AMIA Summits Transl Sci Proc. 2013;2013:67–71.

    PubMed  Google Scholar 

  101. 101.

    Koleck TA, Dreisbach C, Bourne PE, Bakken S. Natural language processing of symptoms documented in free-text narratives of electronic health records: a systematic review. J Am Med Inform Assoc. 2019;26:364–379.

    PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    Chapman WW. Closing the gap between NLP research and clinical practice. Methods Inf Med. 2010;49:317–319.

    CAS  PubMed  Article  Google Scholar 

  103. 103.

    Liberati EG, Ruggiero F, Galuppo L, et al. What hinders the uptake of computerized decision support systems in hospitals? A qualitative study and framework for implementation. Implement Sci. 2017;12:113.

    PubMed  PubMed Central  Article  Google Scholar 

  104. 104.

    Horsky J, Schiff GD, Johnston D, Mercincavage L, Bell D, Middleton B. Interface design principles for usable decision support: a targeted review of best practices for clinical prescribing interventions. J Biomed Inform. 2012;45:1202–1216.

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

We would like to thank An-Lin Cheng, PhD from the department of Bioinformatics at the University of Missouri-Kansas City for her assistance and expertise in developing this manuscript.

Funding

None.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fredy Nehme.

Ethics declarations

Conflict of interest

This statement is to certify that all authors have no conflict of interest related to the current manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nehme, F., Feldman, K. Evolving Role and Future Directions of Natural Language Processing in Gastroenterology. Dig Dis Sci (2020). https://doi.org/10.1007/s10620-020-06156-y

Download citation

Keywords

  • Gastroenterology
  • Artificial intelligence
  • Natural Language Processing
  • Health care