Skip to main content

Advertisement

Log in

Identification of Dysfunctional Gut Microbiota Through Rectal Swab in Patients with Different Severity of Acute Pancreatitis

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Acute pancreatitis (AP) has a wide spectrum of severity and can be associated with considerable morbidity and mortality. Whether gut microbiota dysbiosis is associated with AP severity remains obscure.

Aims

We aim to investigate the differences in the alterations of gut microbiota in different grades of AP severity.

Methods

We collected clinical information and rectal swab samples from 80 individuals. The gut microbiota was tested by 16S rRNA gene sequencing, gut microbiota species composition analysis, difference analysis, random forest model prediction analysis, and gut microbiota species correlation network analysis.

Results

There was a different microbiota profile in different severity grades. Bacteroides, Escherichis-Shigella, and Enterococcus were dominant species in mild, moderately severe, and severe AP, respectively. Finegoldia was the most significantly increased and Blautia the most decreased species in mild AP. Anaerococcus was the most significantly increased and Eubacterium hallii the most decreased species in moderately severe AP. Enterococcus was the most significantly increased and Eubacterium hallii the most decreased species in severe AP. Finegoldia, Eubacterium_hallii, and Lachnospiraceae were potential diagnostic biomarkers for mild AP and Eubacterium_hallii and Anaerococcus for moderately severe AP. There was a positive interaction between Firmicutes and Bacteroidetes in mild AP.

Conclusions

The disturbed gut microbiota is different among grades of AP, suggesting their potential role in the progression of disease severity.

Graphic Abstract

There was a different microbiota profile in different severity grades. Bacteroides, Escherichis-Shigella, and Enterococcus were dominant gut microbiota species in MAP, MSAP, and SAP, respectively. Finegoldia was the most significantly increased and Blautia the most decreased gut microbiota species in MAP. Anaerococcus was the most significantly increased and Eubacterium hallii the most decreased species in MSAP. Enterococcus was the most significantly increased and Eubacterium hallii the most decreased species in SAP. Finegoldia, Eubacterium_hallii, and Lachnospiraceae were potential diagnostic biomarkers for MAP and Eubacterium_hallii and Anaerococcus for MSAP. There was a positive interaction between Firmicutes and Bacteroidetes in MAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  1. Peery AF, Dellon ES, Lund J, et al. Burden of gastrointestinal disease in the United States: 2012 update. Gastroenterology. 2012;143:1179–1187. https://doi.org/10.1053/j.gastro.2012.08.002.

    Article  PubMed  Google Scholar 

  2. Banks PA, Bollen TL, Christos D, et al. Classification of acute pancreatitis–2012: revision of the Atlanta classification and definitions by international consensus. Gut. 2013;62:102–111.

    Article  PubMed  Google Scholar 

  3. Baron TH, Morgan DE. Acute necrotizing pancreatitis. N Engl J Med. 1999;340:1412–1417. https://doi.org/10.1056/nejm199905063401807.

    Article  CAS  PubMed  Google Scholar 

  4. Beger HG, Bittner R, Block S, Buchler M. Bacterial contamination of pancreatic necrosis. A prospective clinical study. Gastroenterology. 1986;91:433–438. https://doi.org/10.1016/0016-5085(86)90579-2.

    Article  CAS  PubMed  Google Scholar 

  5. Bradley EL 3rd, Allen K. A prospective longitudinal study of observation versus surgical intervention in the management of necrotizing pancreatitis. Am J Surg. 1991;161:19–24. https://doi.org/10.1016/0002-9610(91)90355-h.

    Article  PubMed  Google Scholar 

  6. Buchler MW, Gloor B, Muller CA, Friess H, Seiler CA, Uhl W. Acute necrotizing pancreatitis: treatment strategy according to the status of infection. Ann Surg. 2000;232:619–626. https://doi.org/10.1097/00000658-200011000-00001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Clemente JC, Manasson J, Scher JU. The role of the gut microbiome in systemic inflammatory disease. BMJ (Clin Res ed). 2018;360:j5145. https://doi.org/10.1136/bmj.j5145.

    Article  Google Scholar 

  8. Johnson CD. Antibiotic prophylaxis in severe acute pancreatitis. Br J Surg. 2010;83:883–884.

    Article  Google Scholar 

  9. Swann JR, Tuohy KM, Lindfors P, et al. Variation in antibiotic-induced microbial recolonization impacts on the host metabolic phenotypes of rats. J Proteome Res. 2011;10:3590–3603. https://doi.org/10.1021/pr200243t.

    Article  CAS  PubMed  Google Scholar 

  10. Zhu Y, He C, Li X, et al. Gut microbiota dysbiosis worsens the severity of acute pancreatitis in patients and mice. J Gastroenterol. 2019;54:347–358. https://doi.org/10.1007/s00535-018-1529-0.

    Article  CAS  PubMed  Google Scholar 

  11. Fishman JE, Levy G, Alli V, Zheng X, Mole DJ, Deitch EA. The intestinal mucus layer is a critical component of the gut barrier that is damaged during acute pancreatitis. Shock. 2014;42:264–270. https://doi.org/10.1097/shk.0000000000000209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Capurso G, Zerboni G, Signoretti M, et al. Role of the gut barrier in acute pancreatitis. J Clin Gastroenterol. 2012;46:S46–S51. https://doi.org/10.1097/MCG.0b013e3182652096.

    Article  PubMed  Google Scholar 

  13. Ammori BJ, Leeder PC, King RF, et al. Early increase in intestinal permeability in patients with severe acute pancreatitis: correlation with endotoxemia, organ failure, and mortality. J Gastrointest Surg. 1999;3:252–262.

    Article  CAS  PubMed  Google Scholar 

  14. Li Y, Fu X, Ma X, et al. Intestinal Microbiome-Metabolome Responses to Essential Oils in Piglets. Front Microbiol. 2018;9:1988. https://doi.org/10.3389/fmicb.2018.01988.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhao X, Zhang Z, Hu B, Huang W, Yuan C, Zou L. Response of gut microbiota to metabolite changes induced by endurance exercise. Front Microbiol. 2018;9:765.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sinning JM, Scheer AC, Adenauer V, et al. Systemic inflammatory response syndrome predicts increased mortality in patients after transcatheter aortic valve implantation. Eur Heart J. 2012;33:1459–1468. https://doi.org/10.1093/eurheartj/ehs002.

    Article  CAS  PubMed  Google Scholar 

  17. Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315:801–810. https://doi.org/10.1001/jama.2016.0287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bassis CM, Moore NM, Lolans K, et al. Comparison of stool versus rectal swab samples and storage conditions on bacterial community profiles. BMC Microbiol. 2017;17:78. https://doi.org/10.1186/s12866-017-0983-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Biehl LM, Garzetti D, Farowski F, et al. Usability of rectal swabs for microbiome sampling in a cohort study of hematological and oncological patients. PLoS ONE. 2019;14:e0215428. https://doi.org/10.1371/journal.pone.0215428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Philips CA, Phadke N, Ganesan K, et al. Gut microbiota in alcoholic hepatitis is disparate from those in acute alcoholic pancreatitis and biliary disease. J Clin Exp Hepatol. 2019;. https://doi.org/10.1016/j.jceh.2019.04.001.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Majumder S, Gierisch JM, Bastian LA. The association of smoking and acute pancreatitis: a systematic review and meta-analysis. Pancreas. 2015;44:540–546. https://doi.org/10.1097/mpa.0000000000000301.

    Article  PubMed  Google Scholar 

  22. Greenberg JA, Hsu J, Bawazeer M, et al. Clinical practice guideline: management of acute pancreatitis. Can J Surg. 2016;59:128–140. https://doi.org/10.1503/cjs.015015.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li Q, Wang C, Tang C, He Q, Li N, Li J. Bacteremia in patients with acute pancreatitis as revealed by 16S ribosomal RNA gene-based techniques*. Crit Care Med. 2013;41:1938–1950. https://doi.org/10.1097/CCM.0b013e31828a3dba.

    Article  CAS  PubMed  Google Scholar 

  24. Knudsen KEB, Hedemann MS, Lærke HN. The role of carbohydrates in intestinal health of pigs ☆. Anim Feed Sci Technol. 2012;173:41–53.

    Article  Google Scholar 

  25. Sabater‐Ortí L, Calvete‐Chornet J, Lledó‐Matoses S. Therapeutic Approach to Pancreatic Abscess. 2007.

  26. Hamada S, Masamune A, Nabeshima T, Shimosegawa T. Differences in gut microbiota profiles between autoimmune pancreatitis and chronic pancreatitis. Tohoku J Exp Med. 2018;244:113–117.

    Article  CAS  PubMed  Google Scholar 

  27. An E. Interim guidance: preexposure prophylaxis for the prevention of HIV infection in men who have sex with men. MMWR Morb Mortal Wkly Rep. 2011;60:65–68.

    Google Scholar 

  28. Jafar A, Askary A, Abbas Ali IF, Shahram N. Detection of E. coli O157:H7 and Shigella dysenteriae toxins in clinical samples by PCR-ELISA. Braz J Infect Dis. 2015;19:278–284.

    Article  Google Scholar 

  29. Li Q, Wang C, Tang C, He Q, Li N, Li J. Bacteremia in the patients with acute pancreatitis as revealed by 16S ribosomal RNA gene-based techniques. Crit Care Med. 2019;41:1938–1950. https://doi.org/10.1097/CCM.0b013e31828a3dba.

    Article  CAS  Google Scholar 

  30. Marshall JC, Christou NV, Horn R, Meakins JL. The microbiology of multiple organ failure. The proximal gastrointestinal tract as an occult reservoir of pathogens. Auch Surg. 1988;123:309–315.

    Article  CAS  Google Scholar 

  31. Barnett MP, Mcnabb WC, Cookson AL, et al. Changes in colon gene expression associated with increased colon inflammation in interleukin-10 gene-deficient mice inoculated with Enterococcus species. BMC Immunol. 2010;11:1–21.

    Article  Google Scholar 

  32. Tan C, Ling Z, Huang Y, et al. Dysbiosis of intestinal microbiota associated with inflammation involved in the progression of acute pancreatitis. Pancreas. 2015;44:868–875. https://doi.org/10.1097/mpa.0000000000000355.

    Article  CAS  PubMed  Google Scholar 

  33. Murdoch DA. Gram-positive anaerobic cocci. Clin Microbiol Rev. 1998;11:81–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bassetti S, Laifer G, Goy G, Fluckiger U, Frei R. Endocarditis caused by Finegoldia magna (formerly Peptostreptococcus magnus): diagnosis depends on the blood culture system used. Diagn Microbiol Infect Dis. 2003;47:359–360.

    Article  PubMed  Google Scholar 

  35. Fournier PE, La MV, Casalta JP, Richet H, Collart F, Raoult D. Finegoldia magna, an early post-operative cause of infectious endocarditis: Report of two cases and review of the literature. Anaerobe. 2008;14:310–312.

    Article  PubMed  Google Scholar 

  36. Phelps R, Jacobs RA. Purulent pericarditis and mediastinitis due to Peptococcus magnus. JAMA. 1985;254:947–948.

    Article  CAS  PubMed  Google Scholar 

  37. van der Vorm ER, Dondorp AM, van Ketel RJ, Dankert J. Apparent culture-negative prosthetic valve endocarditis caused by Peptostreptococcus magnus. J Clin Microbiol. 2000;38:4640–4642.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tschudin-Sutter S, Frei R, Weisser M, Goldenberger D, Widmer AF. Actinobaculum schaalii - invasive pathogen or innocent bystander? A retrospective observational study. BMC Infect Dis. 2011;11:289. https://doi.org/10.1186/1471-2334-11-289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee SY, Lee E, Park YM, Hong SJ. Microbiome in the gut-skin axis in atopic dermatitis. Allergy Asthma Immunol Res. 2018;10:354–362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Falony G, Joossens M, Vieira-Silva S, et al. Population-level analysis of gut microbiome variation. Sci (NY). 2016;352:560.

    Article  CAS  Google Scholar 

  41. Bajaj JS, Heuman DM, Hylemon PB, et al. Altered profile of human gut microbiome is associated with cirrhosis and its complications. J Hepatol. 2014;60:940–947.

    Article  CAS  PubMed  Google Scholar 

  42. Yanfei C, Fengling Y, Haifeng L, et al. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology. 2011;54:562–572.

    Article  Google Scholar 

  43. Nan Q, Fengling Y, Ang L, et al. Alterations of the human gut microbiome in liver cirrhosis. Nature. 2014;513:59–64.

    Article  Google Scholar 

  44. Tuomisto S, Pessi T, Collin P, Vuento R, Aittoniemi J, Karhunen PJ. Changes in gut bacterial populations and their translocation into liver and ascites in alcoholic liver cirrhotics. BMC Gastroenterol. 2014;14:40.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Li S, Fuhler GM, Nahush BN, et al. Pancreatic cyst fluid harbors a unique microbiome. Microbiome. 2017;5:147.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Julien T, Stanislas M, Florence L, et al. Towards the human intestinal microbiota phylogenetic core. Environ Microbiol. 2010;11:2574–2584.

    Google Scholar 

  47. Walker AW, Ince J, Duncan SH, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 2011;5:220–230.

    Article  CAS  PubMed  Google Scholar 

  48. Engels C, Ruscheweyh HJ, Beerenwinkel N, Lacroix C, Schwab C. The common gut microbe Eubacterium hallii also contributes to intestinal propionate formation. Front Microbiol. 2016;7:e10667.

    Article  Google Scholar 

  49. Ain QU, Aleksandrova A, Roessler FD, Ballester PJ. Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening. Wiley Interdiscipl Rev Comput Mol Sci. 2015;5:405–424. https://doi.org/10.1002/wcms.1225.

    Article  CAS  Google Scholar 

  50. Petra L, Pauline Y, Grietje H, Flint HJ. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environ Microbiol. 2010;12:304–314.

    Article  Google Scholar 

  51. Merelli I. IBDsite: a galaxy-interacting, integrative database for supporting inflammatory bowel disease high throughput data analysis. BMC Bioinformatics. 2012;13:1–14.

    Article  Google Scholar 

  52. Ciocan D, Rebours V, Voican CS, et al. Characterization of intestinal microbiota in alcoholic patients with and without alcoholic hepatitis or chronic alcoholic pancreatitis. Sci Rep. 2018;8:1–12.

    Article  CAS  Google Scholar 

  53. Sinsimer D, Esseghir A, Tang M, Laouar A. The common prophylactic therapy for bowel surgery is ineffective for clearing Bacteroidetes, the primary inducers of systemic inflammation, and causes faster death in response to intestinal barrier damage in mice. BMJ Open Gastroenterol. 2014;1:e000009. https://doi.org/10.1136/bmjgast-2014-000009.

    Article  PubMed  Google Scholar 

  54. Wan YD, Zhu RX, Bian ZZ, Pan XT. Improvement of gut microbiota by inhibition of P38 mitogen-activated protein kinase (MAPK) signaling pathway in rats with severe acute pancreatitis. Med Sci Monit. 2019;25:4609–4616. https://doi.org/10.12659/msm.914538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bonvalet M, Daillère R, Roberti MP, Rauber C, Zitvogel L. The impact of the intestinal microbiota in therapeutic responses against cancer. C R Biol.. 2018;341:284–289. https://doi.org/10.1016/j.crvi.2018.03.004.

    Article  Google Scholar 

  56. Nishida A, Inoue R, Inatomi O, Bamba S, Naito Y, Andoh A. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol. 2018;11:1–10. https://doi.org/10.1007/s12328-017-0813-5.

    Article  PubMed  Google Scholar 

  57. Amar J, Lange C, Payros G, et al. Blood microbiota dysbiosis is associated with the onset of cardiovascular events in a large general population: the D.E.S.I.R study. PLoS ONE. 2013;8:e54461. https://doi.org/10.1371/journal.pone.0054461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rajendhran J, Shankar M, Dinakaran V, Rathinavel A, Gunasekaran P. Contrasting circulating microbiome in cardiovascular disease patients and healthy individuals. Int J Cardiol. 2013;168:5118–5120. https://doi.org/10.1016/j.ijcard.2013.07.232.

    Article  PubMed  Google Scholar 

  59. Dinakaran V, Rathinavel A, Pushpanathan M, Sivakumar R, Gunasekaran P, Rajendhran J. Elevated levels of circulating DNA in cardiovascular disease patients: metagenomic profiling of microbiome in the circulation. PLoS ONE. 2014;9:e105221. https://doi.org/10.1371/journal.pone.0105221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li Q, Wang C, Tang C, Zhao X, He Q, Li J. Identification and characterization of blood and neutrophil-associated microbiomes in patients with severe acute pancreatitis using next-generation sequencing. Front Cell Infect Microbiol. 2018;8:5. https://doi.org/10.3389/fcimb.2018.00005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Taur Y, Xavier JB, Lipuma L, et al. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infect Dis. 2012;55:905–914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ringel Y, Maharshak N, Ringel-Kulka T, Wolber EA, Sartor RB, Carroll IM. High throughput sequencing reveals distinct microbial populations within the mucosal and luminal niches in healthy individuals. Gut Microbes. 2015;6:173–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Professor John A Windsor (Department of Surgery, the University of Auckland, Auckland, New Zealand) for providing comments for the study design and manuscript draft.

Funding

This work was supported by Beijing Natural Science Foundation (No. 7192162). Guarantor of the article: Dong Wu.

Author information

Authors and Affiliations

Authors

Contributions

YSS and XYY contributed to the collection of clinical data and fecal samples, interpretation of data, and drafting of the article. XJ contributed to the concept and design of the study, interpretation of data, and the critical revision of the study methods. LXQ and FYY contributed to the critical revision of the article for relevant intellectual content. LDY made critical revisions of the article for valuable intellectual content. WD and YXZ contributed to design the study, drafting of the article, and critical revision of the article for important intellectual content. All authors approved the final version of the article, including the authorship list.

Corresponding author

Correspondence to Dong Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This study was approved by the institutional review boards of Peking Union Medical College Hospital (No. JS 1826).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, S., Xiong, Y., Xu, J. et al. Identification of Dysfunctional Gut Microbiota Through Rectal Swab in Patients with Different Severity of Acute Pancreatitis. Dig Dis Sci 65, 3223–3237 (2020). https://doi.org/10.1007/s10620-020-06061-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-020-06061-4

Keywords

Navigation