Skip to main content

Advertisement

Log in

Characteristics of Intestinal Myoelectrical and Motor Activities in Diet-Induced Obese Rats: Obesity and Motility

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Gastrointestinal motility has been reported to be altered in obesity. However, it is unknown whether intestinal myoelectrical activity (IMA) is also changed in obesity.

Aims

The aim of this study was to characterize intestinal myoelectrical and motility activities in the fasting state, during feeding, and postprandial state after various test meals in diet-induced obese (DIO) rats in comparison with regular rats.

Methods

IMA was recorded in the fasting, feeding, and postprandial states in DIO and regular rats. Regular laboratory chow, high-fat solid food, and high-fat liquid food were used to test IMA responses to different meals.

Results

(1) The intestinal slow waves in the DIO rats were not different from those in normal rats in the fasting or postprandial state. Neither intestinal transit nor the number of intestinal contractions per minute was altered in DIO rats although gastric emptying was accelerated. (2) Both DIO rats and normal rats showed altered IMA during the first minute of feeding (cephalic stimulation). (3) The intestinal slow waves in both DIO rats and regular rats were impaired slightly but significantly after intake of a high-fat meal.

Conclusions

Our study demonstrates that intestinal myoelectrical activity is not altered in DIO rats and its postprandial responses to various meals are not altered either. High-fat meals induce intestinal dysrhythmia but do not have a chronic impact on intestinal slow waves in DIO rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arnold M, Pandeya N, Byrnes G, et al. 2014 Global burden of cancer attributable to high body-mass index in 2012: a population-based study. Lancet Oncol. 2015;16:36–46.

    Article  PubMed  Google Scholar 

  2. Hong D, Khajanchee YS, Pereira N, Lockhart B, Patterson EJ, Swanstrom LL. Manometric abnormalities and gastroesophageal reflux disease in the morbidly obese. Obes Surg. 2004;14:744–749.

    Article  PubMed  Google Scholar 

  3. Vd Baan-Slootweg OH, Liem O, Bekkali N, et al. Constipation and colonic transit times in children with morbid obesity. J Pediatr Gastroenterol Nutr. 2011;52:442–445.

    Article  PubMed  Google Scholar 

  4. Gallagher TK, Baird AW, Winter DC. Constitutive basal and stimulated human small bowel contractility is enhanced in obesity. Ann Surg Innov Res. 2009;3:4.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mushref MA, Srinivasan S. Effect of high fat-diet and obesity on gastrointestinal motility. Ann Transl Med. 2013;1:14.

    PubMed  PubMed Central  Google Scholar 

  6. Hermon-Taylor J, Code CF. Localization of the duodenal pacemaker and its role in the organization of duodenal myoelectric activity. Gut. 1971;12:40–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Angeli TR, O’Grady G, Erickson JC, et al. Mapping small intestine bioelectrical activity using high-resolution printed-circuit-board electrodes. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:4951–4954.

    PubMed  PubMed Central  Google Scholar 

  8. Huizinga JD, Chen JH. Interstitial cells of Cajal: update on basic and clinical science. Curr Gastroenterol Rep. 2014;16:363.

    Article  PubMed  Google Scholar 

  9. Seidel SA, Hegde SS, Bradshaw LA, Ladipo JK, Richards WO. Intestinal tachyarrhythmias during small bowel ischemia. Am J Physiol. 1999;277:G993–G999.

    CAS  PubMed  Google Scholar 

  10. Lammers WJ, Stephen B, Karam SM. Functional reentry and circus movement arrhythmias in the small intestine of normal and diabetic rats. Am J Physiol Gastrointest Liver Physiol. 2012;302:G684–G689.

    Article  CAS  PubMed  Google Scholar 

  11. Lammers WJ. Normal and abnormal electrical propagation in the small intestine. Acta Physiol (Oxf). 2015;213:349–359.

    Article  CAS  Google Scholar 

  12. Ouyang X, Li S, Foreman R, et al. Hyperglycemia induced small intestinal dysrhythmias attributed to sympathovagal imbalance in normal and diabetic rats. Neurogastroenterol Motil. 2015;27:406–415.

    Article  CAS  PubMed  Google Scholar 

  13. Xu X, Chen DD, Yin J, Chen JD. Altered postprandial responses in gastric myoelectrical activity and cardiac autonomic functions in healthy obese subjects. Obes Surg. 2014;24:554–560.

    Article  CAS  PubMed  Google Scholar 

  14. Qian LW, Peters LJ, Chen JD. Postprandial response of jejunal slow waves and mediation via cholinergic mechanism. Dig Dis Sci. 1999;44:1506–1511. https://doi.org/10.1023/A:1026638221467.

    Article  CAS  PubMed  Google Scholar 

  15. Smeets PA, Erkner A, de Graaf C. Cephalic phase responses and appetite. Nutr Rev. 2010;68:643–655.

    Article  PubMed  Google Scholar 

  16. Taché Y, Adelson D, Yang H. TRH/TRH-R1 receptor signaling in the brain medulla as a pathway of vagally mediated gut responses during the cephalic phase. Curr Pharm Des. 2014;20:2725–2730.

    Article  CAS  PubMed  Google Scholar 

  17. Chen JD, Pan J, Orr WC. Role of sham feeding in postprandial changes of gastric myoelectrical activity. Dig Dis Sci. 1996;41:1706–1712. https://doi.org/10.1007/BF02088734.

    Article  CAS  PubMed  Google Scholar 

  18. Rogers J, Raimundo AH, Misiewicz JJ. Cephalic phase of colonic pressure response to food. Gut. 1993;34:537–543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li S, Maude-Griffin R, Pullan AJ, Chen JD. Gastric emptying and Ca(2 +) and K(+) channels of circular smooth muscle cells in diet-induced obese prone and resistant rats. Obesity. 2013;21:326–335.

    Article  CAS  PubMed  Google Scholar 

  20. Sarna SK, Bowes KL, Daniel EE. Gastric pacemakers. Gastroenterology. 1976;70:226–231.

    Article  CAS  PubMed  Google Scholar 

  21. Gizzi A, Cherubini C, Migliori S, Alloni R, Portuesi R, Filippi S. On the electrical intestine turbulence induced by temperature changes. Phys Biol. 2010;7:16011.

    Article  CAS  PubMed  Google Scholar 

  22. Zheng J, Dobner A, Babygirija R, Ludwig K, Takahashi T. Effects of repeated restraint stress on gastric motility in rats. Am J Physiol Regul Integr Comp Physiol. 2009;296:R1358–R1365.

    Article  CAS  PubMed  Google Scholar 

  23. Tsukada F, Nagura Y, Abe S, Sato N, Ohkubo Y. Effect of restraint and footshock stress and norepinephrine treatment on gastric emptying in rats. Biol Pharm Bull. 2003;26:368–370.

    Article  CAS  PubMed  Google Scholar 

  24. Grybäck P, Näslund E, Hellström PM, Jacobsson H, Backman L. Gastric emptying of solids in humans: improved evaluation by Kaplan-Meier plots, with special reference to obesity and gender. Eur J Nucl Med. 1996;23:1562–1567.

    Article  PubMed  Google Scholar 

  25. Brown BP, Ketelaar MA, Schulze-Delrieu K, Abu-Yousef MM, Brown CK. Strenuous exercise decreases motility and cross-sectional area of human gastric antrum. A study using ultrasound. Dig Dis Sci. 1994;39:940–945. https://doi.org/10.1007/BF02087541.

    Article  CAS  PubMed  Google Scholar 

  26. Verdich C, Madsen JL, Toubro S, Buemann B, Holst JJ, Astrup A. Effects of obesity and major weight reduction on gastric emptying. Int J Obes Rel Metab Dis. 2000;24:899–905.

    Article  CAS  Google Scholar 

  27. Cunningham KM, Daly J, Horowitz M, Read NW. Gastrointestinal adaptation to diets of differing fat composition in human volunteers. Gut. 1991;32:483–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dameto MC, Rayó JM, Esteban S, Planas B, Tur JA. Effect of cafeteria diet on the gastrointestinal transit and emptying in the rat. Comp Biochem Physiol, A: Comp Physiol. 1991;99:651–655.

    Article  CAS  Google Scholar 

  29. Zhang J, Sha W, Zhu H, Chen JD. Blunted peripheral and central responses to gastric mechanical and electrical stimulations in diet-induced obese rats. J Neurogastroenterol Motil. 2013;19:454–466.

    Article  PubMed  PubMed Central  Google Scholar 

  30. France M, Skorich E, Kadrofske M, Swain GM, Galligan JJ. Sex-related differences in small intestinal transit and serotonin dynamics in high-fat-diet-induced obesity in mice. Exp Physiol. 2016;101:81–99.

    Article  CAS  PubMed  Google Scholar 

  31. Wisén O, Johansson C. Gastrointestinal function in obesity: motility, secretion, and absorption following a liquid test meal. Metabolism. 1992;41:390–395.

    Article  PubMed  Google Scholar 

  32. French SJ, Murray B, Rumsey RD, Sepple CP, Read NW. Preliminary studies on the gastrointestinal responses to fatty meals in obese people. International journal of obesity and related metabolic disorders. J Internat Assoc Study of Obesity. 1993;17:295–300.

    CAS  Google Scholar 

  33. Basilisco G, Camboni G, Bozzani A, Vita P, Doldi S, Bianchi PA. Orocecal transit delay in obese patients. Dig Dis Sci. 1989;34:509–512. https://doi.org/10.1007/BF01536325.

    Article  CAS  PubMed  Google Scholar 

  34. Levanon D, Zhang M, Orr WC, Chen JD. Effects of meal constituency on gastric myoelectrical activity. Am J Physiol (Gastrointest Liver Physiol 37). 1998;37:G430–G434.

    Article  Google Scholar 

  35. Fich A, Phillips SF, Neri M, Hanson RB, Zinsmeister AR. Regulation of postprandial motility in the canine ileum. Am J Physiol. 1990;259:G767–G774.

    CAS  PubMed  Google Scholar 

  36. Chang FY, Lu CL, Chen CY, et al. Fasting and postprandial small intestinal slow waves non-invasively measured in subjects with total gastrectomy. J Gastroenterol Hepatol. 2007;22:247–252.

    Article  PubMed  Google Scholar 

  37. Teff K. Nutritional implications of the cephalic-phase reflexes: endocrine responses. Appetite. 2000;34:206–213.

    Article  CAS  PubMed  Google Scholar 

  38. Stern RM, Crawford HE, Stewart WR, Vasey MW, Koch KL. Sham feeding. Cephalic-vagal influences on gastric myoelectric activity. Dig Dis Sci. 1989;34:521–527. https://doi.org/10.1007/BF01536327.

    Article  CAS  PubMed  Google Scholar 

  39. Chen JD, Pan J, Orr WC. Role of sham feeding in postprandial changes of gastric myoelectrical activity. Dig Dis Sci. 1996;41:1706–1712. https://doi.org/10.1007/BF02088734.

    Article  CAS  PubMed  Google Scholar 

  40. Chen JD, Lin ZY, Parolisi S, McCallum RW. Inhibitory effects of cholecystokinin on postprandial gastric myoelectrical activity. Dig Dis Sci. 1995;40:2614–2622. https://doi.org/10.1007/BF02220450.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by a VA Merit Grant (No. 1I01BX002010-01A2).

Author information

Authors and Affiliations

Authors

Contributions

XW conducted the experiment and prepared the manuscript. JY performed data collection and analysis. JC helped in study design and revision of the manuscript.

Corresponding author

Correspondence to Jiande Chen.

Ethics declarations

Conflict of interest

None of the authors reported any conflict of interest.

Ethical approval

This research was approved by the Animal Care and Use Committee of the Veterans Affairs Medical Center (Oklahoma City, OK).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, X., Yin, J. & Chen, J. Characteristics of Intestinal Myoelectrical and Motor Activities in Diet-Induced Obese Rats: Obesity and Motility. Dig Dis Sci 64, 1478–1485 (2019). https://doi.org/10.1007/s10620-019-5458-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-019-5458-4

Keywords

Navigation