Skip to main content

Advertisement

Log in

Severe Intestinal Dysbiosis in Rat Models of Short Bowel Syndrome with Ileocecal Resection

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Short bowel syndrome (SBS) resulting from extensive intestinal resection is thought to significantly affect gut microbiota. Data are limited on the signatures of the intestinal microbiome in SBS with different anatomical types.

Aims

The aim of our investigation was to characterize the composition and function of gut microbiota in SBS with or without ileocecal resection (ICR).

Methods

Six-week-old male Sprague-Dawley rats underwent 75% small bowel resection (SBR) with the ileocecal junction intact (SBR group, jejunoileal anastomosis, n = 10) or removed (ICR group, jejunocolic anastomosis, n = 10), or sham surgery (sham group, n = 10). Colonic contents of the rats were collected 28 days after operation, and 16S rRNA gene sequencing was performed on the MiSeq Illumina platform to analyze bacterial composition.

Results

Overall structures of the gut microbiome differed significantly among the three groups. The bacterial α-diversity of the ICR group was remarkably lower than that of the sham group. ICR rats were enriched with Lactobacillus and opportunistic pathogens from Proteobacteria but depleted of commensal genera belonging to the Lachnospiraceae, Ruminococcaceae and Erysipelotrichaceae families. Genera from the Bacteroidales S24-7 group, Porphyromonadaceae, Prevotellaceae, Rikenellaceae and Christensenellaceae were prevalent in SBR rats. Functional pathways of branched-chain and aromatic amino acid biosynthesis, lipopolysaccharide biosynthesis and infectious diseases were abundant in the ICR group, while SBR rats featured pathways of C5 branched dibasic acid metabolism, biotin metabolism and one carbon pool folate.

Conclusions

ICR causes dramatically more severe intestinal dysbiosis than SBR only in SBS rat models, resulting in altered functional profiles of the gut microbiome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Engstrand Lilja H, Wefer H, Nyström N, Finkel Y, Engstrand L. Intestinal dysbiosis in children with short bowel syndrome is associated with impaired outcome. Microbiome. 2015;3:18.

    PubMed  PubMed Central  Google Scholar 

  2. Tappenden KA. Intestinal adaptation following resection. J Parenter Enter Nutr. 2014;38:23S–31S.

    Google Scholar 

  3. Engelstad HJ, Barron L, Moen J, et al. Remnant small bowel length in pediatric short bowel syndrome and the correlation with intestinal dysbiosis and linear growth. J Am Coll Surg. 2018;227:439–449.

    PubMed  PubMed Central  Google Scholar 

  4. Gillard L, Mayeur C, Robert V, et al. Microbiota is involved in post-resection adaptation in humans with short bowel syndrome. Front Physiol. 2017;8:224.

    PubMed  PubMed Central  Google Scholar 

  5. Berlin P, Reiner J, Wobar J, et al. Villus growth, increased intestinal epithelial sodium selectivity, and hyperaldosteronism are mechanisms of adaptation in a murine model of short bowel syndrome. Dig Dis Sci. 2019;64:1158–1170. https://doi.org/10.1007/s10620-018-5420-x

    CAS  PubMed  Google Scholar 

  6. Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148:1258–1270.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med. 2016;375:2369–2379.

    CAS  PubMed  Google Scholar 

  8. Huang Y, Guo F, Li Y, Wang J, Li J. Fecal microbiota signatures of adult patients with different types of short bowel syndrome. J Gastroenterol Hepatol. 2017;32:1949–1957.

    CAS  PubMed  Google Scholar 

  9. Boccia S, Torre I, Santarpia L, et al. Intestinal microbiota in adult patients with short bowel syndrome: preliminary results from a pilot study. Clin Nutr. 2017;36:1707–1709.

    PubMed  Google Scholar 

  10. Piper HG, Fan D, Coughlin LA, et al. Severe gut microbiota dysbiosis is associated with poor growth in patients with short bowel syndrome. J Parenter Enter Nutr. 2017;41:1202–1212.

    Google Scholar 

  11. Korpela K, Mutanen A, Salonen A, Savilahti E, de Vos WM, Pakarinen MP. Intestinal microbiota signatures associated with histological liver steatosis in pediatric-onset intestinal failure. J Parenter Enter Nutr. 2017;41:238–248.

    Google Scholar 

  12. Wang P, Wang Y, Lu L, et al. Alterations in intestinal microbiota relate to intestinal failure-associated liver disease and central line infections. J Pediatr Surg. 2017;52:1318–1326.

    CAS  PubMed  Google Scholar 

  13. Cole CR, Frem JC, Schmotzer B, et al. The rate of bloodstream infection is high in infants with short bowel syndrome: relationship with small bowel bacterial overgrowth, enteral feeding, and inflammatory and immune responses. J Pediatr. 2010;156:941–947.

    PubMed  PubMed Central  Google Scholar 

  14. Bechtold ML, McClave SA, Palmer LB, et al. The pharmacologic treatment of short bowel syndrome: new tricks and novel agents. Curr Gastroenterol Rep. 2014;16:392.

    PubMed  Google Scholar 

  15. Jeppesen PB. Spectrum of short bowel syndrome in adults: intestinal insufficiency to intestinal failure. J Parenter Enter Nutr. 2014;38:8S–13S.

    Google Scholar 

  16. Lapthorne S, Pereira-Fantini PM, Fouhy F, et al. Gut microbial diversity is reduced and is associated with colonic inflammation in a piglet model of short bowel syndrome. Gut Microbes. 2013;4:212–221.

    PubMed  PubMed Central  Google Scholar 

  17. Sommovilla J, Zhou Y, Sun RC, et al. Small bowel resection induces long-term changes in the enteric microbiota of mice. J Gastrointest Surg. 2015;19:56–64.

    CAS  PubMed  Google Scholar 

  18. Matsumoto Y, Mochizuki W, Akiyama S, et al. Distinct intestinal adaptation for vitamin B12 and bile acid absorption revealed in a new mouse model of massive ileocecal resection. Biol Open. 2017;6:1364–1374.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27:2957–2963.

    PubMed  PubMed Central  Google Scholar 

  20. Schloss PD, Westcott SL, Ryabin T, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–7541.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–998.

    CAS  PubMed  Google Scholar 

  22. Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–596.

    Google Scholar 

  23. Langille MG, Zaneveld J, Caporaso JG, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31:814–821.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sangild PT, Ney DM, Sigalet DL, Vegge A, Burrin D. Animal models of gastrointestinal and liver diseases. Animal models of infant short bowel syndrome: translational relevance and challenges. Am J Physiol Gastrointest Liver Physiol. 2014;307:G1147–G1168.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Levesque CL, Turner J, Li J, et al. In a neonatal piglet model of intestinal failure, administration of antibiotics and lack of enteral nutrition have a greater impact on intestinal microflora than surgical resection alone. J Parenter Enter Nutr. 2017;41:938–945.

    CAS  Google Scholar 

  26. Devine AA, Gonzalez A, Speck KE, et al. Impact of ileocecal resection and concomitant antibiotics on the microbiome of the murine jejunum and colon. PLoS ONE. 2013;8:e73140.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Davidovics ZH, Carter BA, Luna RA, Hollister EB, Shulman RJ, Versalovic J. The Fecal microbiome in pediatric patients with short bowel syndrome. J Parenter Enter Nutr. 2016;40:1106–1113.

    CAS  Google Scholar 

  28. Shin NR, Whon TW, Bae JW. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015;33:496–503.

    CAS  PubMed  Google Scholar 

  29. Bizari L, da Silva Santos AF, Foss NT, et al. Parenteral nutrition in short bowel syndrome patients, regardless of its duration, increases serum proinflammatory cytokines. Nutr Res. 2016;36:751–755.

    CAS  PubMed  Google Scholar 

  30. Joly F, Mayeur C, Bruneau A, et al. Drastic changes in fecal and mucosa-associated microbiota in adult patients with short bowel syndrome. Biochimie. 2010;92:753–761.

    CAS  PubMed  Google Scholar 

  31. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA. 2007;104:13780–13785.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kowlgi NG, Chhabra L. D-lactic acidosis: an underrecognized complication of short bowel syndrome. Gastroenterol Res Pract. 2015;2015:476215.

    PubMed  PubMed Central  Google Scholar 

  33. Tolga Muftuoglu MA, Civak T, Cetin S, Civak L, Gungor O, Saglam A. Effects of probiotics on experimental short-bowel syndrome. Am J Surg. 2011;202:461–468.

    CAS  PubMed  Google Scholar 

  34. Schönfeld P, Wojtczak L. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective. J Lipid Res. 2016;57:943–954.

    PubMed  PubMed Central  Google Scholar 

  35. Akiba Y, Inoue T, Kaji I, et al. Short-chain fatty acid sensing in rat duodenum. J Physiol. 2015;593:585–599.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Iwasaki M, Akiba Y, Kaunitz JD. Duodenal chemosensing of short-chain fatty acids: implications for GI diseases. Curr Gastroenterol Rep. 2019;21:35.

    PubMed  PubMed Central  Google Scholar 

  37. Jeppesen PB. Teduglutide, a novel glucagon-like peptide 2 analog, in the treatment of patients with short bowel syndrome. Ther Adv Gastroenterol. 2012;5:159–171.

    CAS  Google Scholar 

  38. Qing Y, Xie H, Su C, et al. Gut microbiome, short-chain fatty acids, and mucosa injury in young adults with human immunodeficiency virus infection. Dig Dis Sci. 2019;64:1830–1843. https://doi.org/10.1007/s10620-018-5428-2

    CAS  PubMed  Google Scholar 

  39. Chang PV, Hao L, Offermanns S, et al. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci USA. 2014;111:2247–2252.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Neelis E, de Koning B, Rings E, et al. The gut microbiome in patients with intestinal failure: current evidence and implications for clinical practice. J Parenter Enter Nutr. 2019;43:194–205.

    Google Scholar 

  41. Baumann-Dudenhoeffer AM, D’Souza AW, Tarr PI, Warner BB, Dantas G. Infant diet and maternal gestational weight gain predict early metabolic maturation of gut microbiomes. Nat Med. 2018;24:1822–1829.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Badurdeen S, Mulongo M, Berkley JA. Arginine depletion increases susceptibility to serious infections in preterm newborns. Pediatr Res. 2015;77:290–297.

    CAS  PubMed  Google Scholar 

  43. Yang B, Feng L, Wang F, Wang L. Enterohemorrhagic Escherichia coli senses low biotin status in the large intestine for colonization and infection. Nat Commun. 2015;6:6592.

    CAS  PubMed  Google Scholar 

  44. Neis EP, Dejong CH, Rensen SS. The role of microbial amino acid metabolism in host metabolism. Nutrients. 2015;7:2930–2946.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Alsaker KV, Paredes C, Papoutsakis ET. Metabolite stress and tolerance in the production of biofuels and chemicals: gene-expression-based systems analysis of butanol, butyrate, and acetate stresses in the anaerobe Clostridium acetobutylicum. Biotechnol Bioeng. 2010;105:1131–1147.

    CAS  PubMed  Google Scholar 

  46. Shapiro J, Cohen NA, Shalev V, Uzan A, Koren O, Maharshak N. Psoriatic patients have a distinct structural and functional fecal microbiota compared with controls. J Dermatol. 2019 [Epub ahead of print]. https://doi.org/10.1111/1346-8138.14933.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant no. 81270945) and Clinical Research Program of 9th People’s Hospital, Shanghai JiaoTong University School of Medicine (grant no. JYLJ022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousheng Li.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. All procedures performed in the study involving animals were approved by the Animal Experimental Ethics Committee of the Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Chen, A., Guo, F. et al. Severe Intestinal Dysbiosis in Rat Models of Short Bowel Syndrome with Ileocecal Resection. Dig Dis Sci 65, 431–441 (2020). https://doi.org/10.1007/s10620-019-05802-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-019-05802-4

Keywords

Navigation