Second-Generation Biomarker Testing for Irritable Bowel Syndrome Using Plasma Anti-CdtB and Anti-Vinculin Levels

Abstract

Background

ELISA testing for anti-CdtB and anti-vinculin can discriminate patients with irritable bowel syndrome with diarrhea (IBS-D) from those with inflammatory bowel disease (IBD). However, recent findings suggest the antigens can suffer from epitope instability.

Aim

This study aimed to assess effects of incorporating epitope stabilization on test characteristics for distinguishing IBS-D from IBD subjects.

Methods

Plasma samples from IBS-D subjects from a large-scale clinical trial and subjects with endoscopically active IBD without concurrent immunomodulator therapy were used. After epitope stabilization, CdtB and vinculin were used in ELISA testing. Optical density readings were compared between IBS-D and IBD subjects.

Results

Samples from 100 IBS-D and 31 IBD (22 UC and 9 CD) subjects were tested. IBS-D subjects had higher anti-CdtB titers (P = 0.0001) and higher anti-vinculin titers (P = 0.004) than IBD subjects. The specificities of anti-CdtB and anti-vinculin to differentiate IBS-D from IBD were 93.5% and 90.9%, respectively, with sensitivities of 43.0% and 52.2%, respectively. The positive likelihood ratios of identifying IBS-D with anti-CdtB and anti-vinculin were 6.7 and 5.7, respectively. Assuming a pretest probability of 57% for diagnosis of IBS-D in patients with abdominal pain and change in bowel habits, testing positive for both antibodies resulted in a posttest probability of > 98%.

Conclusions

Performing epitope stabilization for CdtB and vinculin enhances the test characteristics of ELISAs for anti-CdtB and anti-vinculin in discriminating IBS-D from IBD. Measurement of anti-CdtB and anti-vinculin with this second-generation methodology may further advance our understanding of the role of immunity in functional bowel diseases.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Choung RS, Locke GR 3rd. Epidemiology of IBS. Gastroenterol Clin North Am. 2011;40:1–10.

    PubMed  Google Scholar 

  2. 2.

    Lovell RM, Ford AC. Global prevalence of and risk factors for irritable bowel syndrome: a meta-analysis. Clin Gastroenterol Hepatol. 2012;10:e714.

    Google Scholar 

  3. 3.

    Mearin F, Lacy BE, Chang L, et al. Bowel disorders. Gastroenterology. 2016;150:1393–1407.

    Google Scholar 

  4. 4.

    DA Drossman RJ, Talley NJ, et al. Functional gastrointestinal disorders: diagnosis, pathophysiology and treatment: a multinational consensus. Boston: Little, Brown; 1994.

    Google Scholar 

  5. 5.

    Thompson WG, Longstreth GF, Drossman DA, Heaton KW, Irvine EJ, Muller-Lissner SA. Functional bowel disorders and functional abdominal pain. Gut. 1999;45:II43–47.

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Longstreth GF, Thompson WG, Chey WD, Houghton LA, Mearin F, Spiller RC. Functional bowel disorders. Gastroenterology. 2006;130:1480–1491.

    PubMed  Google Scholar 

  7. 7.

    American Gastroenterological Association. Guidelines–Rome III diagnostic criteria for functional gastrointestinal disorders. J Gastrointestin Liver Dis. 2006;15:307–312.

  8. 8.

    Pimentel M, Chow EJ, Lin HC. Eradication of small intestinal bacterial overgrowth reduces symptoms of irritable bowel syndrome. Am J Gastroenterol. 2000;95:3503–3506.

    CAS  PubMed  Google Scholar 

  9. 9.

    Pimentel M, Chow EJ, Lin HC. Normalization of lactulose breath testing correlates with symptom improvement in irritable bowel syndrome. A double-blind, randomized, placebo-controlled study. Am J Gastroenterol. 2003;98:412–419.

    PubMed  Google Scholar 

  10. 10.

    Lupascu A, Gabrielli M, Lauritano EC, et al. Hydrogen glucose breath test to detect small intestinal bacterial overgrowth: a prevalence case-control study in irritable bowel syndrome. Aliment Pharmacol Ther. 2005;22:1157–1160.

    CAS  PubMed  Google Scholar 

  11. 11.

    Cuoco L, Salvagnini M. Small intestine bacterial overgrowth in irritable bowel syndrome: a retrospective study with rifaximin. Minerva Gastroenterol Dietol. 2006;52:89–95.

    CAS  PubMed  Google Scholar 

  12. 12.

    Majewski M, McCallum RW. Results of small intestinal bacterial overgrowth testing in irritable bowel syndrome patients: clinical profiles and effects of antibiotic trial. Adv Med Sci. 2007;52:139–142.

    CAS  PubMed  Google Scholar 

  13. 13.

    Pimentel M. The prevalence of small intestinal bacterial overgrowth in irritable bowel syndrome: IBS vs healthy controls (not historical definitions). Gut. 2008;57:1334–1335. (author reply 1335).

    CAS  PubMed  Google Scholar 

  14. 14.

    Pyleris E, Giamarellos-Bourboulis EJ, Tzivras D, Koussoulas V, Barbatzas C, Pimentel M. The prevalence of overgrowth by aerobic bacteria in the small intestine by small bowel culture: relationship with irritable bowel syndrome. Dig Dis Sci. 2012;57:1321–1329.

    PubMed  Google Scholar 

  15. 15.

    Neal KR, Barker L, Spiller RC. Prognosis in post-infective irritable bowel syndrome: a six year follow up study. Gut. 2002;51:410–413.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Spiller RC. Postinfectious irritable bowel syndrome. Gastroenterology. 2003;124:1662–1671.

    PubMed  Google Scholar 

  17. 17.

    Parry SD, Stansfield R, Jelley D, et al. Is irritable bowel syndrome more common in patients presenting with bacterial gastroenteritis? A community-based, case-control study. Am J Gastroenterol. 2003;98:327–331.

    PubMed  Google Scholar 

  18. 18.

    Marshall JK, Thabane M, Garg AX, et al. Intestinal permeability in patients with irritable bowel syndrome after a waterborne outbreak of acute gastroenteritis in Walkerton, Ontario. Aliment Pharmacol Ther. 2004;20:1317–1322.

    CAS  PubMed  Google Scholar 

  19. 19.

    Mearin F, Perez-Oliveras M, Perello A, et al. Dyspepsia and irritable bowel syndrome after a Salmonella gastroenteritis outbreak: one-year follow-up cohort study. Gastroenterology. 2005;129:98–104.

    PubMed  Google Scholar 

  20. 20.

    Klem F, Wadhwa A, Prokop LJ, et al. Prevalence, risk factors, and outcomes of irritable bowel syndrome after infectious enteritis: a systematic review and meta-analysis. Gastroenterology. 2017;152:e1041.

    Google Scholar 

  21. 21.

    Pokkunuri V, Pimentel M, Morales W, et al. Role of cytolethal distending toxin in altered stool form and bowel phenotypes in a rat model of post-infectious irritable bowel syndrome. J Neurogastroenterol Motil. 2012;18:434–442.

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Pimentel M, Morales W, Pokkunuri V, et al. Autoimmunity links vinculin to the pathophysiology of chronic functional bowel changes following Campylobacter jejuni infection in a rat model. Dig Dis Sci. 2015;60:1195–1205.

    CAS  PubMed  Google Scholar 

  23. 23.

    Parodi G, Morales W, Park SC, et al. Cytolethal distending toxin B (CdtB) exposure alone is sufficient to precipitate autoimmunity and changes to the small intestinal microbiome in a rat model of post-infectious IBS. Gastroenterology. 2017;152:S621.

    Google Scholar 

  24. 24.

    Pimentel M, Morales W, Rezaie A, et al. Development and validation of a biomarker for diarrhea-predominant irritable bowel syndrome in human subjects. PLoS ONE. 2015;10:e0126438.

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Chira A, Dumitrascu DL. Serum biomarkers for irritable bowel syndrome. Clujul Med. 2015;88:258–264.

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Schmulson M, Balbuena R, Corona de Law C. Clinical experience with the use of anti-CdtB and anti-vinculin antibodies in patients with diarrhea in Mexico. Rev Gastroenterol Mex. 2016;81:236–239.

    CAS  PubMed  Google Scholar 

  27. 27.

    Pike BL, Paden KA, Alcala AN, et al. Immunological biomarkers in postinfectious irritable bowel syndrome. J Travel Med. 2015;22:242–250.

    PubMed  Google Scholar 

  28. 28.

    Rezaie A, Park SC, Morales W, et al. Assessment of anti-vinculin and anti-cytolethal distending toxin B antibodies in subtypes of irritable bowel syndrome. Dig Dis Sci. 2017;62:1480–1485.

    CAS  PubMed  Google Scholar 

  29. 29.

    Lombardero M, Heymann PW, Platts-Mills TA, Fox JW, Chapman MD. Conformational stability of B cell epitopes on group I and group II Dermatophagoides spp. allergens. Effect of thermal and chemical denaturation on the binding of murine IgG and human IgE antibodies. J Immunol. 1990;144:1353–1360.

    CAS  PubMed  Google Scholar 

  30. 30.

    Forsstrom B, Axnas BB, Rockberg J, Danielsson H, Bohlin A, Uhlen M. Dissecting antibodies with regards to linear and conformational epitopes. PLoS ONE. 2015;10:e0121673.

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Lembo A, Pimentel M, Rao SS, et al. Repeat treatment with rifaximin is safe and effective in patients with diarrhea-predominant irritable bowel syndrome. Gastroenterology. 2016;151:1113–1121.

    CAS  PubMed  Google Scholar 

  32. 32.

    Ford AC, Talley NJ, Veldhuyzen van Zanten SO, Vakil NB, Simel DL, Moayyedi P. Will the history and physical examination help establish that irritable bowel syndrome is causing this patient’s lower gastrointestinal tract symptoms? JAMA. 2008;300:1793–1805.

    CAS  PubMed  Google Scholar 

  33. 33.

    American Gastroenterological Association. The burden of gastrointestinal diseases. Bethesda, MD: American Gastroenterological Association; 2001.

  34. 34.

    Sood R, Camilleri M, Gracie DJ, et al. Enhancing diagnostic performance of symptom-based criteria for irritable bowel syndrome by additional history and limited diagnostic evaluation. Am J Gastroenterol. 2016;111:1446–1454.

    PubMed  Google Scholar 

  35. 35.

    Shah ED, Riddle MS, Chang C, Pimentel M. Estimating the contribution of acute gastroenteritis to the overall prevalence of irritable bowel syndrome. J Neurogastroenterol Motil. 2012;18:200–204.

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Pimentel M, Chatterjee S, Chang C, et al. A new rat model links two contemporary theories in irritable bowel syndrome. Dig Dis Sci. 2008;53:982–989.

    PubMed  Google Scholar 

  37. 37.

    Jee SR, Morales W, Low K, et al. ICC density predicts bacterial overgrowth in a rat model of post-infectious IBS. World J Gastroenterol. 2010;16:3680–3686.

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Sung J, Morales W, Kim G, et al. Effect of repeated Campylobacter jejuni infection on gut flora and mucosal defense in a rat model of post infectious functional and microbial bowel changes. Neurogastroenterol Motil. 2013;25:529–537.

    CAS  PubMed  Google Scholar 

  39. 39.

    Spiller RC, Jenkins D, Thornley JP, et al. Increased rectal mucosal enteroendocrine cells, T lymphocytes, and increased gut permeability following acute Campylobacter enteritis and in post-dysenteric irritable bowel syndrome. Gut. 2000;47:804–811.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Peng X, Cuff LE, Lawton CD, DeMali KA. Vinculin regulates cell-surface E-cadherin expression by binding to beta-catenin. J Cell Sci. 2010;123:567–577.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Peng X, Nelson ES, Maiers JL, DeMali KA. New insights into vinculin function and regulation. Int Rev Cell Mol Biol. 2011;287:191–231.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Demali KA. Vinculin—a dynamic regulator of cell adhesion. Trends Biochem Sci. 2004;29:565–567.

    CAS  PubMed  Google Scholar 

  43. 43.

    Shen K, Tolbert CE, Guilluy C, et al. The vinculin C-terminal hairpin mediates F-actin bundle formation, focal adhesion, and cell mechanical properties. J Biol Chem. 2011;286:45103–45115.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Xu W, Baribault H, Adamson ED. Vinculin knockout results in heart and brain defects during embryonic development. Development. 1998;125:327–337.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Gemelli Biotech Inc and Pacific Dx (Irvine, California) for performing the sample analyses.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mark Pimentel.

Ethics declarations

Conflict of interest

Cedars-Sinai has a licensing agreement with Salix Pharmaceuticals and Gemelli Biotech. Mark Pimentel is a founder of Gemelli Biotech, has equity in the company, and serves on the board. Ali Rezaie is a founder of Gemelli Biotech and also has equity in the company. Walter Morales is a consultant for Gemelli Biotech. Gillian Barlow has no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morales, W., Rezaie, A., Barlow, G. et al. Second-Generation Biomarker Testing for Irritable Bowel Syndrome Using Plasma Anti-CdtB and Anti-Vinculin Levels. Dig Dis Sci 64, 3115–3121 (2019). https://doi.org/10.1007/s10620-019-05684-6

Download citation

Keywords

  • Epitope stabilization
  • Cytolethal distending toxin
  • Vinculin
  • Enzyme-linked immunosorbent assay
  • Diagnostic testing
  • Irritable bowel syndrome