Serum and Fecal Oxylipins in Patients with Alcohol-Related Liver Disease

Abstract

Background

Alcohol-related liver disease is one of the most prevalent chronic liver diseases worldwide. Mechanisms involved in the pathogenesis of alcohol-related liver disease are not well understood. Oxylipins play a crucial role in numerous biological processes and pathological conditions. Nevertheless, oxylipins are not well studied in alcohol-related liver disease.

Aims

(1) To characterize the patterns of bioactive ω-3 and ω-6 polyunsaturated fatty acid metabolites in alcohol use disorder and alcoholic hepatitis patients and (2) to identify associations of serum oxylipins with clinical parameters in patients with alcohol-related liver disease.

Methods

We performed a comprehensive liquid chromatography with tandem mass spectrometry (LC–MS/MS) analysis of serum and fecal oxylipins derived from ω-6 arachidonic acid, ω-3 eicosapentaenoic acid, and docosahexaenoic acid in a patient cohort with alcohol-related liver disease.

Results

Our results show profound alterations in the serum oxylipin profile of patients with alcohol use disorder and alcoholic hepatitis compared to nonalcoholic controls. Spearman correlation of the oxylipins with clinical parameters shows a link between different serum oxylipins and intestinal permeability, aspartate aminotransferase, bilirubin, albumin, international normalized ratio, platelet count, steatosis, fibrosis and model for end-stage liver disease score. Especially, higher level of serum 20-HETE was significantly associated with decreased albumin, increased hepatic steatosis, polymorphonuclear infiltration, and 90-day mortality.

Conclusions

Patients with alcohol-related liver disease have different oxylipin profiles. Future studies are required to confirm oxylipins as disease biomarker or to connect oxylipins to disease pathogenesis.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

AP:

Alkaline phosphatase

AST:

Aspartate aminotransferase

ALT:

Alanine aminotransferase

BMI:

Body mass index

CAP:

Controlled attenuation parameter

INR:

International normalized ratio

MELD:

Model for end-stage liver disease

MELDNa:

Sodium model for end-stage liver disease

PMN:

Polymorphonuclear infiltration

AA:

Arachidonic acid

EPA:

Eicosapentaenoic acid

DHA:

Docosahexaenoic acid

HpETE:

Hydroperoxyeicosatetraenoic acid

HETE:

Hydroxyeicosatetraenoic acid

DiHETE:

Dihydroxyeicosatetraenoic acid

PG:

Prostaglandin

TX:

Thromboxane X

EpETrE:

Epoxyeicosatrienoic acid

DiHETrE:

Dihydroxyeicosatrienoic acid

HpEPE:

Hydroperoxy-eicosapentaenoic acid

HEPE:

Hydroxyeicosapentaenoic acid

DiHEPE:

Dihydroxyeicosapentaenoic acid

EpETE:

Epoxyeicosatetraenoic acid

HpDoHE:

Hydroperoxydocosahexaenoic acid

HDoHE:

Hydroxydocosahexaenoic acid

DiHDoHE:

Dihydroxydocosahexaenoic acid

DiHDPE:

Dihydroxydocosapentaenoic acid

PLS-DA:

Partial least squares discriminant analysis

VIP:

Variable importance in projection

MRM:

Multiple reaction monitoring

References

  1. 1.

    Kwo PY, Cohen SM, Lim JK. ACG clinical guideline: evaluation of abnormal liver chemistries. Am J Gastroenterol. 2017;112:18.

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Gao B, Bataller R. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology. 2011;141:1572–1585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Gabbs M, Leng S, Devassy JG, Monirujjaman M, Aukema HM. Advances in our understanding of oxylipins derived from dietary PUFAs. Adv Nutr (Bethesda, Md.). 2015;6:513–540.

    Article  CAS  Google Scholar 

  4. 4.

    Buczynski MW, Dumlao DS, Dennis EA. Thematic review series: proteomics. An integrated omics analysis of eicosanoid biology. J Lipid Res. 2009;50:1015–1038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Arnold C, Konkel A, Fischer R, Schunck W-H. Cytochrome P450–dependent metabolism of ω-6 and ω-3 long-chain polyunsaturated fatty acids. Pharmacol Rep. 2010;62:536–547.

    Article  CAS  Google Scholar 

  6. 6.

    Barquissau V, Ghandour RA, Ailhaud G, et al. Control of adipogenesis by oxylipins, GPCRs and PPARs. Biochimie. 2017;136:3–11.

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Caligiuri SPB, Parikh M, Stamenkovic A, Pierce GN, Aukema HM. Dietary modulation of oxylipins in cardiovascular disease and aging. Am J Physiol Heart Circ Physiol. 2017;313:H903–H918.

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Tourdot BE, Ahmed I, Holinstat M. The emerging role of oxylipins in thrombosis and diabetes. Front Pharmacol. 2014;4:176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Funk CD. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science. 2001;294:1871.

    Article  CAS  Google Scholar 

  10. 10.

    Yeung J, Hawley M, Holinstat M. The expansive role of oxylipins on platelet biology. J Mol Med (Berlin, Germany). 2017;95:575–588.

    Article  CAS  Google Scholar 

  11. 11.

    Wagner D, Westover K, Simmons DL. Nonsteroidal anti-inflammatory drugs, acetaminophen, cyclooxygenase 2, and fever. Clin Infect Dis. 2000;31:S211–S218.

    Article  PubMed  Google Scholar 

  12. 12.

    Liu MC, Dubé LM, Lancaster J. Acute and chronic effects of a 5-lipoxygenase inhibitor in asthma: A 6-month randomized multicenter trial. J Allergy Clin Immunol. 1996;98:859–871.

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Zhang W, Zhong W, Sun Q, Sun X, Zhou Z. Hepatic overproduction of 13-HODE due to ALOX15 upregulation contributes to alcohol-induced liver injury in mice. Sci Rep. 2017;7:8976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Feldstein AE, Lopez R, Tamimi TA-R, et al. Mass spectrometric profiling of oxidized lipid products in human nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. J Lipid Res. 2010;51:3046–3054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Ball SA, Tennen H, Poling JC, Kranzler HR, Rounsaville BJ. Personality, temperament, and character dimensions and the DSM-IV personality disorders in substance abusers. J Abnorm Psychol. 1997;106:545–553.

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Brandl K, Hartmann P, Jih LJ, et al. Dysregulation of serum bile acids and FGF19 in alcoholic hepatitis. J Hepatol. 2018;69:396–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Nguyen-Khac E, Thiele M, Voican C, et al. Non-invasive diagnosis of liver fibrosis in patients with alcohol-related liver disease by transient elastography: an individual patient data meta-analysis. Lancet Gastroenterol Hepatol. 2018;3:614–625.

    Article  PubMed  Google Scholar 

  18. 18.

    Salavrakos M, Piessevaux H, Komuta M, Lanthier N, Starkel P. Fibroscan reliably rules out advanced liver fibrosis and significant portal hypertension in alcoholic patients. J Clin Gastroenterol. 2018. https://doi.org/10.1097/MCG.0000000000001119.

    Article  PubMed  Google Scholar 

  19. 19.

    Buzzetti E, Lombardi R, De Luca L, Tsochatzis EA. Noninvasive assessment of fibrosis in patients with nonalcoholic fatty liver disease. Int J Endocrinol. 2015;2015:343828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Eddowes PJ, Sasso M, Allison M, et al. Accuracy of FibroScan controlled attenuation parameter and liver stiffness measurement in assessing steatosis and fibrosis in patients with non-alcoholic fatty liver disease. Gastroenterology. 2019;​156:1717–1730.

    Article  PubMed  Google Scholar 

  21. 21.

    Caussy C, Alquiraish MH, Nguyen P, et al. Optimal threshold of controlled attenuation parameter with MRI-PDFF as the gold standard for the detection of hepatic steatosis. Hepatology. 2018;67:1348–1359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Karlas T, Petroff D, Sasso M, et al. Individual patient data meta-analysis of controlled attenuation parameter (CAP) technology for assessing steatosis. J Hepatol. 2017;66:1022–1030.

    Article  PubMed  Google Scholar 

  23. 23.

    Leclercq S, Matamoros S, Cani PD, et al. Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proc Natl Acad Sci USA. 2014;111:E4485–E4493.

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Shearer GC, Harris WS, Pedersen TL, Newman JW. Detection of omega-3 oxylipins in human plasma and response to treatment with omega-3 acid ethyl esters. J Lipid Res. 2010;51:2074–2081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Luria A, Weldon SM, Kabcenell AK, et al. Compensatory mechanism for homeostatic blood pressure regulation in Ephx2 gene-disrupted mice. J Biol Chem. 2007;282:2891–2898.

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Barupal DK, Fiehn O. Chemical similarity enrichment analysis (ChemRICH) as alternative to biochemical pathway mapping for metabolomic datasets. Sci Rep. 2017;7:14567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Warner DR, Liu H, Ghosh Dastidar S, et al. Ethanol and unsaturated dietary fat induce unique patterns of hepatic ω-6 and ω-3 PUFA oxylipins in a mouse model of alcoholic liver disease. PloS One. 2018;13:e0204119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Lazic M, Inzaugarat ME, Povero D, et al. Reduced dietary omega-6 to omega-3 fatty acid ratio and 12/15-lipoxygenase deficiency are protective against chronic high fat diet-induced steatohepatitis. PloS one. 2014;9:e107658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Puri P, Xu J, Vihervaara T, et al. Alcohol produces distinct hepatic lipidome and eicosanoid signature in lean and obese. J Lipid Res. 2016;57:1017–1028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Puri P, Wiest MM, Cheung O, et al. The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology (Baltimore, Md.). 2009;50:1827–1838.

    Article  CAS  Google Scholar 

  31. 31.

    Zein CO, Lopez R, Fu X, et al. Pentoxifylline decreases oxidized lipid products in nonalcoholic steatohepatitis: new evidence on the potential therapeutic mechanism. Hepatology (Baltimore, Md.). 2012;56:1291–1299.

    Article  CAS  Google Scholar 

  32. 32.

    Kirpich IA, Feng W, Wang Y, et al. The type of dietary fat modulates intestinal tight junction integrity, gut permeability, and hepatic toll-like receptor expression in a mouse model of alcoholic liver disease. Alcohol Clin Exp Res. 2012;36:835–846.

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Noverr MC, Erb-Downward JR, Huffnagle GB. Production of eicosanoids and other oxylipins by pathogenic eukaryotic microbes. Clin Microbiol Rev. 2003;16:517–533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Tsitsigiannis DI, Keller NP. Oxylipins as developmental and host–fungal communication signals. Trends Microbiol. 2007;15:109–118.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by NIH Grants R01 AA020703, R01 AA24726, U01 AA021856, U01 AA026939 and by Award Number BX004594 from the Biomedical Laboratory Research & Development Service of the VA Office of Research and Development (to B.S.), and by Fond National de Recherche Scientifique (FNRS) Belgium grants CDR J.0146.17 and PDR T.0217.18 (to P.S.).

Author information

Affiliations

Authors

Contributions

B.G. was responsible for data acquisition, analysis, interpretation, and writing of the manuscript; S.L. was responsible for data analysis; Y.D. and Y.W. were responsible for preparation of human samples; D.L.S., A.L., P.M., S.B.H., and P.S. enrolled subjects for bio-specimen collection; and B.S. was responsible for the study concept and design, editing the manuscript, and study supervision.

Corresponding author

Correspondence to Bernd Schnabl.

Ethics declarations

Conflict of interest

B.S. is consulting for Ferring Research Institute.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure S1 Venn diagram of significantly altered oxylipins found in both serum and fecal samples (adjusted p value < 0.05). Ctrl: controls; AUD: alcoholic use disorder; AH: alcoholic hepatitis (JPEG 165 kb)

Supplemental Figure S2 Spearman correlation of fecal oxylipins with laboratory parameters in alcoholic hepatitis and alcohol use disorder patients. Color intensity represents the correlation coefficient (R). Red: positive correlation. Blue: negative correlation. * p < 0.05, ** p < 0.01, *** p < 0.001. INR, international normalized ratio; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, gamma-glutamyltransferase; AP, alkaline phosphatase (JPEG 267 kb)

Supplemental Figure S3 Spearman correlation of fecal oxylipins with parameters of liver disease stage in alcohol use disorder patients (A). CAP: controlled attenuation parameter. Color intensity represents the correlation coefficient (R). Red: positive correlation. Blue: negative correlation. * p < 0.05. Number of alcohol use disorder patients N = 30. Spearman correlation of fecal oxylipins with liver histology and clinical scores in alcoholic hepatitis patients (B). Color intensity represents the correlation coefficient (R). Red: positive correlation. Blue: negative correlation. * p < 0.05, ** p < 0.01, *** p < 0.001. MELD, model for end-stage liver disease; MELDNa, sodium model for end-stage liver disease. Number of alcoholic hepatitis patients N = 7 (JPEG 486 kb)

Supplementary material 4 (XLSX 17 kb)

Supplementary material 5 (XLSX 11 kb)

Supplementary material 6 (XLSX 22 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, B., Lang, S., Duan, Y. et al. Serum and Fecal Oxylipins in Patients with Alcohol-Related Liver Disease. Dig Dis Sci 64, 1878–1892 (2019). https://doi.org/10.1007/s10620-019-05638-y

Download citation

Keywords

  • AA
  • EPA
  • DHA
  • PUFA
  • Lipid mediator
  • Metabolomics