Skip to main content

Advertisement

Log in

Maintenance of Intestinal Epithelial Homeostasis by Zinc Transporters

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Zinc is an essential micronutrient for normal organ function, and dysregulation of zinc metabolism has been implicated in a wide range of diseases. Emerging evidence has revealed that zinc transporters play diverse roles in cellular homeostasis and function by regulating zinc trafficking via organelles or the plasma membrane. In the gastrointestinal tract, zinc deficiency leads to diarrhea and dysfunction of intestinal epithelial cells. Studies also showed that zinc transporters are very important in intestinal epithelial homeostasis. In this review, we describe the physiological roles of zinc transporters in intestinal epithelial functions and relevance of zinc transporters in gastrointestinal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Andreini C, Banci L, Bertini I, Rosato A. Counting the zinc-proteins encoded in the human genome. J Proteome Res. 2006;5:196–201.

    Article  CAS  PubMed  Google Scholar 

  2. Andreini C, Bertini I. A bioinformatics view of zinc enzymes. J Inorg Biochem. 2012;111:150–156.

    Article  CAS  PubMed  Google Scholar 

  3. Andreini C, Bertini I, Rosato A. Metalloproteomes: a bioinformatic approach. Acc Chem Res. 2009;42:1471–1479.

    Article  CAS  PubMed  Google Scholar 

  4. Murakami M, Hirano T. Intracellular zinc homeostasis and zinc signaling. Cancer Sci. 2008;99:1515–1522.

    Article  CAS  PubMed  Google Scholar 

  5. Hirano T, Murakami M, Fukada T, Nishida K, Yamasaki S, Suzuki T. Roles of zinc and zinc signaling in immunity: zinc as an intracellular signaling molecule. Adv Immunol. 2008;97:149–176.

    Article  CAS  PubMed  Google Scholar 

  6. Sensi SL, Paoletti P, Bush AI, Sekler I. Zinc in the physiology and pathology of the CNS. Nat Rev Neurosci. 2009;10:780–791.

    Article  CAS  PubMed  Google Scholar 

  7. Frederickson CJ, Koh J-Y, Bush AI. The neurobiology of zinc in health and disease. Nat Rev Neurosci. 2005;6:449–462.

    Article  CAS  PubMed  Google Scholar 

  8. Kambe T, Yamaguchi-Iwai Y, Sasaki R, Nagao M. Overview of mammalian zinc transporters. Cell Mol Life Sci. 2004;61:49–68.

    Article  CAS  PubMed  Google Scholar 

  9. Kambe T, Tsuji T, Hashimoto A, Itsumura N. The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol Rev. 2015;95:749–784.

    Article  CAS  PubMed  Google Scholar 

  10. Hara T, Takeda T-A, Takagishi T, Fukue K, Kambe T, Fukada T. Physiological roles of zinc transporters: molecular and genetic importance in zinc homeostasis. J Physiol Sci. 2017;67:283–301.

    Article  CAS  PubMed  Google Scholar 

  11. Baltaci AK, Yuce K. Zinc transporter proteins. Neurochem Res. 2018;43:517–530.

    Article  CAS  PubMed  Google Scholar 

  12. Fukada T, Kambe T. Molecular and genetic features of zinc transporters in physiology and pathogenesis. Metallomics. 2011;3:662–674.

    Article  CAS  PubMed  Google Scholar 

  13. Semrad CE. Zinc and intestinal function. Curr Gastroenterol Rep. 1999;1:398–403.

    Article  CAS  PubMed  Google Scholar 

  14. Skrovanek S, DiGuilio K, Bailey R, et al. Zinc and gastrointestinal disease. WJGP. 2014;5:496–513.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Barnes PM, Moynahan EJ. Zinc deficiency in acrodermatitis enteropathica: multiple dietary intolerance treated with synthetic diet. Proc R Soc Med. 1973;66:327–329.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Goh J, O’Morain CA. Review article: nutrition and adult inflammatory bowel disease. Aliment Pharmacol Ther. 2003;17:307–320.

    Article  CAS  PubMed  Google Scholar 

  17. Hering NA, Schulzke J-D. Therapeutic options to modulate barrier defects in inflammatory bowel disease. Dig Dis. 2009;27:450–454.

    Article  PubMed  Google Scholar 

  18. Cohen L, Sekler I, Hershfinkel M. The zinc sensing receptor, ZnR/GPR39, controls proliferation and differentiation of colonocytes and thereby tight junction formation in the colon. Cell Death Differ. 2014;5:e1307–e1312.

    Article  CAS  Google Scholar 

  19. Roselli M, Finamore A, Garaguso I, Britti MS, Mengheri E. Zinc oxide protects cultured enterocytes from the damage induced by Escherichia coli. J Nutr. 2003;133:4077–4082.

    Article  CAS  PubMed  Google Scholar 

  20. Pongkorpsakol P, Buasakdi C, Chantivas T, Chatsudthipong V, Muanprasat C. An agonist of a zinc-sensing receptor GPR39 enhances tight junction assembly in intestinal epithelial cells via an AMPK-dependent mechanism. Eur J Pharmacol. 2019;842:306–313.

    Article  CAS  PubMed  Google Scholar 

  21. Broun ER, Greist A, Tricot G, Hoffman R. Excessive zinc ingestion: A reversible cause of sideroblastic anemia and bone marrow depression. JAMA. 1990;264:1441–1443.

    Article  CAS  PubMed  Google Scholar 

  22. Nriagu J. Zinc toxicity in humans. Emcucl Envision Health. 2007;80:1–8.

    Google Scholar 

  23. Wang X, Zhou B. Dietary zinc absorption: a play of Zips and ZnTs in the gut. IUBMB Life. 2010;62:176–182.

    Article  CAS  PubMed  Google Scholar 

  24. Cousins RJ, Liuzzi JP, Lichten LA. Mammalian zinc transport, trafficking, and signals. J Biol Chem. 2006;281:24085–24089.

    Article  CAS  PubMed  Google Scholar 

  25. Takagishi T, Hara T, Fukada T. Recent advances in the role of SLC39A/ZIP zinc transporters in vivo. Int J Mol Sci. 2017;18:2708.

    Article  CAS  PubMed Central  Google Scholar 

  26. van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol. 2009;71:241–260.

    Article  CAS  PubMed  Google Scholar 

  27. Knoop KA, Newberry RD. Goblet cells: multifaceted players in immunity at mucosal surfaces. Mucosal Immunol. 2018;11:1551–1557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Worthington JJ, Reimann F, Gribble FM. Enteroendocrine cells-sensory sentinels of the intestinal environment and orchestrators of mucosal immunity. Mucosal Immunol. 2018;11:3–20.

    Article  CAS  PubMed  Google Scholar 

  29. Clevers HC, Bevins CL. Paneth cells: maestros of the small intestinal crypts. Annu Rev Physiol. 2013;75:289–311.

    Article  CAS  PubMed  Google Scholar 

  30. Sbarbati A, Osculati F. A new fate for old cells: brush cells and related elements. J Anat. 2005;206:349–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jarvi O, Keyrilainen O. On the cellular structures of the epithelial invasions in the glandular stomach of mice caused by intramural application of 20-methylcholantren. Acta Pathol Microbiol Scand Suppl. 1956;39:72–73.

    Article  CAS  PubMed  Google Scholar 

  32. Miller H, Zhang J, Kuolee R, Patel GB, Chen W. Intestinal M cells: the fallible sentinels? World J Gastroenterol. 2007;13:1477–1486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Owen RL, Jones AL. Epithelial cell specialization within human Peyer’s patches: an ultrastructural study of intestinal lymphoid follicles. Gastroenterology. 1974;66:189–203.

    Article  CAS  PubMed  Google Scholar 

  34. Westphalen CB, Asfaha S, Hayakawa Y, et al. Long-lived intestinal tuft cells serve as colon cancer-initiating cells. J Clin Investig. 2014;124:1283–1295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gerbe F, Sidot E, Smyth DJ, et al. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature. 2016;529:226–230.

    Article  CAS  PubMed  Google Scholar 

  36. von Moltke J, Ji M, Liang HE, Lockesley RM. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature. 2016;529:221–225.

    Article  CAS  Google Scholar 

  37. Ayabe T, Satchell DP, Wilson CL, Parks WC, Selsted ME, Ouellette AJ. Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria. Nat Immunol. 2000;1:113–118.

    Article  CAS  PubMed  Google Scholar 

  38. Sato T, van Es JH, Snippert HJ, et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature. 2011;469:415–418.

    Article  CAS  PubMed  Google Scholar 

  39. Barker N. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat Rev Mol Cell Biol. 2013;15:19–33.

    Article  CAS  PubMed  Google Scholar 

  40. Barker N, van Es JH, Kuipers J, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449:1003–1007.

    Article  CAS  PubMed  Google Scholar 

  41. de Lau W, Barker N, Low TY, et al. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature. 2012;476:293–297.

    Article  CAS  Google Scholar 

  42. Kim KA. Mitogenic influence of human R-spondin 1 on the intestinal epithelium. Science. 2005;309:1256–1259.

    Article  CAS  PubMed  Google Scholar 

  43. Darwich AS, Aslam U, Ashcroft DM, Rostami-Hodjegan A. Meta-analysis of the turnover of intestinal epithelia in preclinical animal species and humans. Drug Metab Dispos. 2014;42:2016–2022.

    Article  CAS  PubMed  Google Scholar 

  44. Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Cancer. 2014;14:141–153.

    CAS  Google Scholar 

  45. Takahashi D, Hase K, Kimura S, et al. The epithelia-specific membrane trafficking factor AP-1B controls gut immune homeostasis in mice. Gastroenterology. 2011;141:621–632.

    Article  CAS  PubMed  Google Scholar 

  46. Schnabl B, Brenner DA. Interactions between the intestinal microbiome and liver diseases. Gastroenterology. 2014;146:1513–1524.

    Article  CAS  PubMed  Google Scholar 

  47. Thaiss CA, Levy M, Grosheva I, et al. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science. 2018;359:1376–1383.

    Article  CAS  PubMed  Google Scholar 

  48. Hsiao EY, McBride SW, Hsien S, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155:1451–1463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee HH, Prasad AS, Brewer GJ, Owyang C. Zinc absorption in human small intestine. Am J Physiol. 1989;256:G87–G91.

    CAS  PubMed  Google Scholar 

  50. Dufner-Beattie J, Wang F, Kuo YM, Gitschier J, Eide D, Andrews GK. The acrodermatitis enteropathica gene ZIP4 encodes a tissue-specific, zinc-regulated zinc transporter in mice. J Biol Chem. 2003;278:33474–33481.

    Article  CAS  PubMed  Google Scholar 

  51. Weaver BP, Dufner-Beattie J, Kambe T, Andrews GK. Novel zinc-responsive post-transcriptional mechanisms reciprocally regulate expression of the mouse Slc39a4 and Slc39a5 zinc transporters (Zip4 and Zip5). Biol Chem. 2007;388:1301–1312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim B-E, Wang F, Dufner-Beattie J, Andrews GK, Eide DJ, Petris MJ. Zn2+-stimulated endocytosis of the mZIP4 zinc transporter regulates its location at the plasma membrane. J Biol Chem. 2004;279:4523–4530.

    Article  CAS  PubMed  Google Scholar 

  53. Mao X, Kim B-E, Wang F, Eide DJ, Petris MJ. A histidine-rich cluster mediates the ubiquitination and degradation of the human zinc transporter, hZIP4, and protects against zinc cytotoxicity. J Biol Chem. 2007;282:6992–7000.

    Article  CAS  PubMed  Google Scholar 

  54. Kambe T, Andrews GK. Novel proteolytic processing of the ectodomain of the zinc transporter ZIP4 (SLC39A4) during zinc deficiency is inhibited by acrodermatitis enteropathica mutations. Mol Cell Biol. 2009;29:129–139.

    Article  CAS  PubMed  Google Scholar 

  55. McMahon RJ, Cousins RJ. Regulation of the zinc transporter ZnT-1 by dietary zinc. Proc Nat Acad Sci USA. 1998;95:4841–4846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liuzzi JP, Blanchard RK, Cousins RJ. Differential regulation of zinc transporter 1, 2, and 4 mRNA expression by dietary zinc in rats. J Nutr. 2001;131:46–52.

    Article  CAS  PubMed  Google Scholar 

  57. Jou M-Y, Hall AG, Philipps AF, Kelleher SL, Lönnerdal B. Tissue-specific alterations in zinc transporter expression in intestine and liver reflect a threshold for homeostatic compensation during dietary zinc deficiency in weanling rats. J Nutr. 2009;139:835–841.

    Article  CAS  PubMed  Google Scholar 

  58. Geiser J, De Lisle RC, Andrews GK. The zinc transporter Zip5 (Slc39a5) regulates intestinal zinc excretion and protects the pancreas against zinc toxicity. PLoS ONE. 2013;8:e82149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dufner-Beattie J, Kuo Y-M, Gitschier J, Andrews GK. The adaptive response to dietary zinc in mice involves the differential cellular localization and zinc regulation of the zinc transporters ZIP4 and ZIP5. J Biol Chem. 2004;279:49082–49090.

    Article  CAS  PubMed  Google Scholar 

  60. Huang ZL, Dufner-Beattie J, Andrews GK. Expression and regulation of SLC39A family zinc transporters in the developing mouse intestine. Dev Biol. 2006;295:571–579.

    Article  CAS  PubMed  Google Scholar 

  61. Weaver BP, Andrews GK. Regulation of zinc-responsive Slc39a5 (Zip5) translation is mediated by conserved elements in the 3′-untranslated region. Biometals. 2012;25:319–335.

    Article  CAS  PubMed  Google Scholar 

  62. Cragg RA, Phillips SR, Piper JM, et al. Homeostatic regulation of zinc transporters in the human small intestine by dietary zinc supplementation. Gut. 2005;54:469–478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jackson KA, Helston RM, McKay JA, O’Neill ED, Mathers JC, Ford D. Splice variants of the human zinc transporter ZnT5 (SLC30A5) are differentially localized and regulated by zinc through transcription and mRNA stability. J Biol Chem. 2007;282:10423–10431.

    Article  CAS  PubMed  Google Scholar 

  64. Valentine RA, Jackson KA, Christie GR, Mathers JC, Taylor PM, Ford D. ZnT5 variant B is a bidirectional zinc transporter and mediates zinc uptake in human intestinal Caco-2 cells. J Biol Chem. 2007;282:14389–14393.

    Article  CAS  PubMed  Google Scholar 

  65. Ford D. Intestinal and placental zinc transport pathways. Proc Nutr Soc. 2007;63:21–29.

    Article  CAS  Google Scholar 

  66. Guthrie GJ, Aydemir TB, Troche C, Martin AB, Chang S-M, Cousins RJ. Influence of ZIP14 (slc39A14) on intestinal zinc processing and barrier function. AJP Gastrointest Liver Physiol. 2015;308:G171–G178.

    Article  CAS  Google Scholar 

  67. Kimura T, Kambe T. The functions of metallothionein and ZIP and ZnT transporters: an overview and perspective. Int J Mol Sci. 2016;17:336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Baltaci AK, Yuce K, Mogulkoc R. Zinc metabolism and metallothioneins. Biol Trace Elem Res. 2018;183:22–31.

    Article  CAS  PubMed  Google Scholar 

  69. Davis SR, McMahon RJ, Cousins RJ. Metallothionein knockout and transgenic mice exhibit altered intestinal processing of zinc with uniform zinc-dependent zinc transporter-1 expression. J Nutr. 1998;128:825–831.

    Article  CAS  PubMed  Google Scholar 

  70. Maares M, Keil C, Koza J, Straubing S, Schwerdtle T, Haase H. In vitro studies on zinc binding and buffering by intestinal mucins. Int J Mol Sci. 2018;19:E2662.

    Article  CAS  PubMed  Google Scholar 

  71. Ohashi W, Kimura S, Iwanaga T, et al. Zinc transporter SLC39A7/ZIP7 promotes intestinal epithelial self-renewal by resolving ER stress. PLoS Genet. 2016;12:e1006349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schuijers J, van der Flier LG, van Es J, Clevers H. Robust Cre-mediated recombination in small intestinal stem cells utilizing the Olfm4 locus. Stem Cell Rep. 2014;3:234–241.

    Article  CAS  Google Scholar 

  73. Tian H, Biehs B, Warming S, et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature. 2012;478:255–259.

    Article  CAS  Google Scholar 

  74. Takeda N, Jain R, LeBoeuf MR, Wang Q, Lu MM, Epstein JA. Interconversion between intestinal stem cell populations in distinct niches. Science. 2011;334:1420–1424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Metcalfe C, Kljavin NM, Ybarra R, de Sauvage FJ. Lgr5+ stem cells are indispensable for radiation-induced intestinal regeneration. Cell Stem Cell. 2013;14:1–11.

    Google Scholar 

  76. Cheng H, Leblond CP. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intesine. Am J Anat. 1974;141:537–561.

    Article  CAS  PubMed  Google Scholar 

  77. Potten CS. Extreme sensitivity of some intestinal crypt cells to X and gamma irradiation. Nature. 1977;269:518–521.

    Article  CAS  PubMed  Google Scholar 

  78. van Es JH, Sato T, van de Wetering M, et al. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat Cell Biol. 2012;14:1099–1104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Geiser J, Venken KJT, De Lisle RC, Andrews GK. A mouse model of acrodermatitis enteropathica: loss of intestine zinc transporter ZIP4 (Slc39a4) disrupts the stem cell niche and intestine integrity. PLoS Genet. 2012;8:e1002766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Seno H, Sawada M, Fukuzawa H, et al. Enhanced expression of transforming growth factor (TGF)-alpha precursor and TGF-beta1 during Paneth cell regeneration. Dig Dis Sci. 2001;46:1004–1010. https://doi.org/10.1023/A:1010797609041.

    Article  CAS  PubMed  Google Scholar 

  81. Dinsdale D. Ultrastructural localization of zinc and calcium within the granules of rat Paneth cells. J Histochem Cytochem. 1984;32:139–145.

    Article  CAS  PubMed  Google Scholar 

  82. Porter EM, Bevins CL, Ghosh D, Ganz T. The multifaceted Paneth cell. Cell Mol Life Sci. 2002;59:156–170.

    Article  CAS  PubMed  Google Scholar 

  83. Giblin LJ, Chang CJ, Bentley AF, Frederickson C, Lippard SJ, Frederickson CJ. Zinc-secreting Paneth cells studied by ZP fluorescence. J Histochem Cytochem. 2006;54:311–316.

    Article  CAS  PubMed  Google Scholar 

  84. Podany AB, Wright J, Lamendella R, Soybel DI, Kelleher SL. ZnT2-mediated zinc import into Paneth cell granules is necessary for coordinated secretion and Paneth cell function in mice. Cell Mol Gastroenterol Hepatol. 2016;2:369–383.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Yu YY, Kirschke CP, Huang L. Immunohistochemical analysis of ZnT1, 4, 5, 6, and 7 in the mouse gastrointestinal tract. J Histochem Cytochem. 2007;55:223–234.

    Article  CAS  PubMed  Google Scholar 

  86. Prasad AS. Clinical manifestations of zinc deficiency. Annu Rev Nutr. 1985;5:341–363.

    Article  CAS  PubMed  Google Scholar 

  87. Hambidge M. Human zinc deficiency. J Nutr. 2000;130:1344S–1349S.

    Article  CAS  PubMed  Google Scholar 

  88. Wang K, Zhou B, Kuo Y-M, Zemansky J, Gitschier J. A novel member of a zinc transporter family is defective in acrodermatitis enteropathica. Am J Hum Genet. 2002;71:66–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Küry S, Dréno B, Bézieau S, et al. Identification of SLC39A4, a gene involved in acrodermatitis enteropathica. Nat Genet. 2002;31:239–240.

    Article  CAS  PubMed  Google Scholar 

  90. Moynahan EJ. Letter: acrodermatitis enteropathica: a lethal inherited human zinc-deficiency disorder. Lancet. 1974;2:399–400.

    Article  CAS  PubMed  Google Scholar 

  91. Sehgal VN, Jain S. Acrodermatitis enteropathica. Clin Dermatol. 2000;18:745–748.

    Article  CAS  PubMed  Google Scholar 

  92. Atherton DJ, Muller DP, Aggett PJ, Harries JT. A defect in zinc uptake by jejunal biopsies in acrodermatitis enteropathica. Clin Sci. 1979;56:505–507.

    Article  CAS  Google Scholar 

  93. Kasana S, Din J, Maret W. Genetic causes and gene–nutrient interactions in mammalian zinc deficiencies: Acrodermatitis enteropathica and transient neonatal zinc deficiency as examples. J Trace Elem Med Biol. 2015;29:47–62.

    Article  CAS  PubMed  Google Scholar 

  94. Schmitt S, Küry S, Giraud M, Dréno B, Kharfi M, Bézieau S. An update on mutations of the SLC39A4 gene in acrodermatitis enteropathica. Hum Mutat. 2009;30:926–933.

    Article  CAS  PubMed  Google Scholar 

  95. Lombeck I, von Bassewitz DB, Becker K, Tinschmann P, Kästner H. Ultrastructural findings in acrodermatitis enteropathica. Pediatr Res. 1974;8:82–88.

    Article  CAS  PubMed  Google Scholar 

  96. Kelly P, Feakins R, Domizio P, et al. Paneth cell granule depletion in the human small intestine under infective and nutritional stress. Clin Exp Immunol. 2004;135:303–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lewin K. The Paneth cell in disease. Gut.. 1969;10:804–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. van Haelst UJ, Pruszczynski M. Unusual intracytoplasmic inclusions in metastatic carcinoma. Discussion of their possible significance. Pathol Res Pract. 1995;191:535–540.

    Article  PubMed  Google Scholar 

  99. Watson PH. Fibrillary cytoplasmic inclusions in neoplastic Paneth cells. Histopathology. 1990;16:69–74.

    Article  CAS  PubMed  Google Scholar 

  100. Braun OH, Heilmann K, Rossner JA, Pauli W, Bergmann KE. Acrodermatitis enteropathica. II. Zinc deficiency and ultrastructural findings. Eur J Pediatr. 1977;125:153–162.

    Article  CAS  PubMed  Google Scholar 

  101. Bohane TD, Cutz E, Hamilton JR, Gall DG. Acrodermatitis enteropathica, zinc, and the Paneth cell. A case report with family studies. Gastroenterology. 1977;73:587–592.

    Article  CAS  PubMed  Google Scholar 

  102. Kobayashi Y, Suzuki H, Konno T, Tada K, Yamamoto TY. Ultrastructural alterations of Paneth cells in infants associated with gastrointestinal symptoms. Tohoku J Exp Med. 1983;139:225–230.

    Article  CAS  PubMed  Google Scholar 

  103. Sunuwar L, Medini M, Cohen L, Sekler I, Hershfinkel M. The zinc sensing receptor, ZnR/GPR39, triggers metabotropic calcium signalling in colonocytes and regulates occludin recovery in experimental colitis. Philos Trans R Soc B. 2016;371:20150420.

    Article  CAS  Google Scholar 

  104. Li D, Achkar J-P, Haritunians T, et al. A pleiotropic missense variant in SLC39A8 is associated with Crohn’s disease and human gut microbiome composition. Gastroenterology. 2016;151:724–732.

    Article  CAS  PubMed  Google Scholar 

  105. Cui R, Kamatani Y, Takahashi A, et al. Functional variants in ADH1B and ALDH2 coupled with alcohol and smoking synergistically enhance esophageal cancer risk. Gastroenterology. 2009;137:1768–1775.

    Article  CAS  PubMed  Google Scholar 

  106. Wang L-D, Zhou F-Y, Li X-M, et al. Genome-wide association study of esophageal squamous cell carcinoma in Chinese subjects identifies susceptibility loci at PLCE1 and C20orf54. Nat Genet. 2010;42:759–763.

    Article  CAS  PubMed  Google Scholar 

  107. Abnet CC, Freedman ND, Hu N, et al. A shared susceptibility locus in PLCE1 at 10q23 for gastric adenocarcinoma and esophageal squamous cell carcinoma. Nat Genet. 2010;42:764–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wu C, Hu Z, He Z, et al. Genome-wide association study identifies three new susceptibility loci for esophageal squamous-cell carcinoma in Chinese populations. Nat Genet. 2011;43:679–684.

    Article  CAS  PubMed  Google Scholar 

  109. Ohashi S, Miyamoto S, Kikuchi O, Goto T, Amanuma Y, Muto M. Recent advances from basic and clinical studies of esophageal squamous cell carcinoma. Gastroenterology. 2015;149:1700–1715.

    Article  PubMed  Google Scholar 

  110. Wu C, Li D, Jia W, et al. Genome-wide association study identifies common variants in SLC39A6 associated with length of survival in esophageal squamous-cell carcinoma. Nat Genet. 2013;45:632–638.

    Article  CAS  PubMed  Google Scholar 

  111. Cheng X, Wei L, Huang X, et al. Solute carrier family 39 member 6 gene promotes aggressiveness of esophageal carcinoma cells by increasing intracellular levels of zinc, activating phosphatidylinositol 3-kinase signaling, and up-regulating genes that regulate metastasis. Gastroenterology. 2017;152:1985.e12–1997.e12.

    Article  CAS  Google Scholar 

  112. Dufner-Beattie J, Huang ZL, Geiser J, Xu W, Andrews GK. Mouse ZIP1 and ZIP3 genes together are essential for adaptation to dietary zinc deficiency during pregnancy. Genesis. 2006;44:239–251.

    Article  CAS  PubMed  Google Scholar 

  113. Peters JL, Dufner-Beattie J, Xu W, et al. Targeting of the mouse Slc39a2 (Zip2) gene reveals highly cell-specific patterns of expression, and unique functions in zinc, iron, and calcium homeostasis. Genesis. 2007;45:339–352.

    Article  CAS  PubMed  Google Scholar 

  114. Dufner-Beattie J, Huang ZL, Geiser J, Xu W, Andrews GK. Generation and characterization of mice lacking the zinc uptake transporter ZIP3. Mol Cell Biol. 2005;25:5607–5615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dufner-Beattie J, Weaver BP, Geiser J, et al. The mouse acrodermatitis enteropathica gene Slc39a4 (Zip4) is essential for early development and heterozygosity causes hypersensitivity to zinc deficiency. Hum Mol Genet. 2007;16:1391–1399.

    Article  CAS  PubMed  Google Scholar 

  116. Bin B-H, Bhin J, Kim N-H, et al. An acrodermatitis enteropathica-associated Zn transporter, ZIP4, regulates human epidermal homeostasis. J Investig Dermatol. 2017;137:874–883.

    Article  CAS  PubMed  Google Scholar 

  117. Guo H, Jin X, Zhu T, et al. SLC39A5 mutations interfering with the BMP/TGF-β pathway in non-syndromic high myopia. J Med Genet. 2014;51:518–525.

    Article  CAS  PubMed  Google Scholar 

  118. Feng C-Y, Huang X-Q, Cheng X-W, Wu R-H, Lu F, Jin Z-B. Mutational screening of SLC39A5, LEPREL1 and LRPAP1 in a cohort of 187 high myopia patients. Sci Rep. 2017;7:1120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Taylor KM, Muraina IA, Brethour D, et al. Zinc transporter ZIP10 forms a heteromer with ZIP6 which regulates embryonic development and cell migration. Biochem J. 2016;473:2531–2544.

    Article  CAS  PubMed  Google Scholar 

  120. Hogstrand C, Kille P, Ackland ML, Hiscox S, Taylor KM. A mechanism for epithelial-mesenchymal transition and anoikis resistance in breast cancer triggered by zinc channel ZIP6 and STAT3 (signal transducer and activator of transcription 3). Biochem J. 2013;455:229–237.

    Article  CAS  PubMed  Google Scholar 

  121. Yamashita S, Miyagi C, Fukada T, Kagara N, Che Y-S, Hirano T. Zinc transporter LIVI controls epithelial-mesenchymal transition in zebrafish gastrula organizer. Nature. 2004;429:298–302.

    Article  CAS  PubMed  Google Scholar 

  122. Bin B-H, Bhin J, Seo J, et al. Requirement of zinc transporter SLC39A7/ZIP7 for dermal development to fine-tune endoplasmic reticulum function by regulating protein disulfide isomerase. J Investig Dermatol. 2017;137:1682–1691.

    Article  CAS  PubMed  Google Scholar 

  123. Taylor KM, Vichova P, Jordan N, Hiscox S, Hendley R, Nicholson RI. ZIP7-mediated intracellular zinc transport contributes to aberrant growth factor signaling in antihormone-resistant breast cancer cells. Endocrinology. 2008;149:4912–4920.

    Article  CAS  PubMed  Google Scholar 

  124. Kim J-H, Jeon J, Shin M, et al. Regulation of the catabolic cascade in osteoarthritis by the zinc-ZIP8-MTF1 axis. Cell. 2014;156:730–743.

    Article  CAS  PubMed  Google Scholar 

  125. Boycott KM, Beaulieu CL, Kernohan KD, et al. Autosomal-recessive intellectual disability with cerebellar atrophy syndrome caused by mutation of the manganese and zinc transporter gene SLC39A8. Am J Hum Genet. 2015;97:886–893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Park JH, Hogrebe M, Grüneberg M, et al. SLC39A8 deficiency: a disorder of manganese transport and glycosylation. Am J Hum Genet. 2015;97:894–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Pickrell JK, Berisa T, Liu JZ, Ségurel L, Tung JY, Hinds DA. Detection and interpretation of shared genetic influences on 42 human traits. Nat Genet. 2016;48:709–717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Choi E-K, Nguyen T-T, Gupta N, Iwase S, Seo YA. Functional analysis of SLC39A8 mutations and their implications for manganese deficiency and mitochondrial disorders. Sci Rep. 2018;8:3163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lin W, Li D, Cheng L, et al. Zinc transporter Slc39a8 is essential for cardiac ventricular compaction. J Clin Investig. 2018;128:826–833.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Taniguchi M, Fukunaka A, Hagihara M, et al. Essential role of the zinc transporter ZIP9/SLC39A9 in regulating the activations of Akt and Erk in B-cell receptor signaling pathway in DT40 cells. PLoS ONE. 2013;8:e58022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Thomas P, Converse A, Berg HA. ZIP9, a novel membrane androgen receptor and zinc transporter protein. Gen Comp Endocrinol. 2018;257:130–136.

    Article  CAS  PubMed  Google Scholar 

  132. Miyai T, Hojyo S, Ikawa T, et al. Zinc transporter SLC39A10/ZIP10 facilitates antiapoptotic signaling during early B-cell development. Proc Natl Acad Sci USA. 2014;111:11780–11785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hojyo S, Miyai T, Fujishiro H, et al. Zinc transporter SLC39A10/ZIP10 controls humoral immunity by modulating B-cell receptor signal strength. Proc Nat Acad Sci USA. 2014;111:11786–11791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Bin B-H, Bhin J, Takaishi M, et al. Requirement of zinc transporter ZIP10 for epidermal development: implication of the ZIP10-p63 axis in epithelial homeostasis. Proc Natl Acad Sci USA. 2017;114:12243–12248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gao H, Zhao L, Wang H, et al. Metal transporter Slc39a10 regulates susceptibility to inflammatory stimuli by controlling macrophage survival. Proc Natl Acad Sci USA. 2017;114:12940–12945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Barresi V, Valenti G, Spampinato G, et al. Transcriptome analysis reveals an altered expression profile of zinc transporters in colorectal cancer. J Cell Biochem. 2018;119:9707–9719.

    Article  CAS  PubMed  Google Scholar 

  137. Wu L, Chaffee KG, Parker AS, Sicotte H, Petersen GM. Zinc transporter genes and urological cancers: integrated analysis suggests a role for ZIP11 in bladder cancer. Tumour Biol. 2015;36:7431–7437.

    Article  CAS  PubMed  Google Scholar 

  138. Zhao L, Oliver E, Maratou K, et al. The zinc transporter ZIP12 regulates the pulmonary vascular response to chronic hypoxia. Nature. 2015;524:356–360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Chowanadisai W. Comparative genomic analysis of slc39a12/ZIP12: insight into a zinc transporter required for vertebrate nervous system development. PLoS ONE. 2014;9:e111535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Fukada T, Civic N, Furuichi T, et al. The zinc transporter SLC39A13/ZIP13 is required for connective tissue development; Its involvement in BMP/TGF-β signaling pathways. PLoS ONE. 2008;3:e3642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Bin B-H, Fukada T, Hosaka T, et al. Biochemical characterization of human ZIP13 protein: a homo-dimerized zinc transporter involved in the spondylocheiro dysplastic Ehlers-Danlos syndrome. J Biol Chem. 2011;286:40255–40265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Fukunaka A, Fukada T, Bhin J, et al. Zinc transporter ZIP13 suppresses beige adipocyte biogenesis and energy expenditure by regulating C/EBP-β expression. PLoS Genet. 2017;13:e1006950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Dusanic M, Dekomien G, Lücke T, et al. Novel nonsense mutation in SLC39A13 initially presenting as myopathy: case report and review of the literature. Mol Syndromol. 2018;9:100–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Tuschl K, Meyer E, Valdivia LE, et al. Mutations in SLC39A14 disrupt manganese homeostasis and cause childhood-onset parkinsonism-dystonia. Nat Commun. 2016;7:11601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Aydemir TB, Troche C, Kim M-H, Cousins RJ. Hepatic ZIP14-mediated zinc transport contributes to endosomal insulin receptor trafficking and glucose metabolism. J Biol Chem. 2016;291:23939–23951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Troche C, Aydemir TB, Cousins RJ. Zinc transporter Slc39a14 regulates inflammatory signaling associated with hypertrophic adiposity. Am J Physiol Endocrinol Metab. 2016;310:E258–E268.

    Article  PubMed  Google Scholar 

  147. Kim M-H, Aydemir TB, Kim J, Cousins RJ. Hepatic ZIP14-mediated zinc transport is required for adaptation to endoplasmic reticulum stress. Proc Natl Acad Sci USA. 2017;114:E5805–E5814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hojyo S, Fukada T, Shimoda S, et al. The zinc transporter SLC39A14/ZIP14 controls G-protein coupled receptor-mediated signaling required for systemic growth. PLoS ONE. 2011;6:e18059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wang G, Biswas AK, Ma W, et al. Metastatic cancers promote cachexia through ZIP14 upregulation in skeletal muscle. Nat Med. 2018;24:770–781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Andrews GK, Wang H, Dey SK, Palmiter RD. Mouse zinc transporter 1 gene provides an essential function during early embryonic development. Genesis. 2004;40:74–81.

    Article  CAS  PubMed  Google Scholar 

  151. Lee S, Hennigar SR, Alam S, Nishida K, Kelleher SL. Essential role for zinc transporter 2 (ZnT2)-mediated zinc transport in mammary gland development and function during lactation. J Biol Chem. 2015;290:13064–13078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Itsumura N, Kibihara Y, Fukue K, et al. Novel mutations in SLC30A2 involved in the pathogenesis of transient neonatal zinc deficiency. Pediatr Res. 2016;80:586–594.

    Article  CAS  PubMed  Google Scholar 

  153. Lee S, Zhou Y, Gill DL, Kelleher SL. A genetic variant in SLC30A2 causes breast dysfunction during lactation by inducing ER stress, oxidative stress and epithelial barrier defects. Sci Rep. 2018;8:3542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Golan Y, Kambe T, Assaraf YG. The role of the zinc transporter SLC30A2/ZnT2 in transient neonatal zinc deficiency. Metallomics. 2017;9:1352–1366.

    Article  CAS  PubMed  Google Scholar 

  155. Li Y, Andereggen L, Yuki K, et al. Mobile zinc increases rapidly in the retina after optic nerve injury and regulates ganglion cell survival and optic nerve regeneration. Proc Natl Acad Sci USA. 2017;114:E209–E218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Hildebrand MS, Phillips AM, Mullen SA, et al. Loss of synaptic Zn2+ transporter function increases risk of febrile seizures. Sci Rep. 2015;5:17816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Adlard PA, Parncutt JM, Finkelstein DI, Bush AI. Cognitive loss in zinc transporter-3 knock-out mice: a phenocopy for the synaptic and memory deficits of Alzheimer’s disease? J Neurosci. 2010;30:1631–1636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Huang L, Gitschier J. A novel gene involved in zinc transport is deficient in the lethal milk mouse. Nat Genet. 1997;17:292–297.

    Article  CAS  PubMed  Google Scholar 

  159. Vignesh KS, Figueroa JAL, Porollo A, Divanovic S, Caruso JA, Deepe GS Jr. IL-4 induces metallothionein 3- and SLC30A4-dependent increase in intracellular Zn2+ that promotes pathogen persistence in macrophages. Cell Rep. 2016;16:3232–3246.

    Article  CAS  PubMed Central  Google Scholar 

  160. Nishida K, Hasegawa A, Nakae S, et al. Zinc transporter Znt5/Slc30a5 is required for the mast cell-mediated delayed-type allergic reaction but not the immediate-type reaction. J Exp Med. 2009;206:1351–1364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Inoue K, Matsuda K, Itoh M, et al. Osteopenia and male-specific sudden cardiac death in mice lacking a zinc transporter gene, Znt5. Hum Mol Genet. 2002;11:1775–1784.

    Article  CAS  PubMed  Google Scholar 

  162. Huang L, Yu YY, Kirschke CP, Gertz ER, Lloyd KKC. Znt7 (Slc30a7)-deficient mice display reduced body zinc status and body fat accumulation. J Biol Chem. 2007;282:37053–37063.

    Article  CAS  PubMed  Google Scholar 

  163. Huang L, Tepaamorndech S, Kirschke CP, et al. Aberrant fatty acid metabolism in skeletal muscle contributes to insulin resistance in zinc transporter 7 (znt7)-knockout mice. J Biol Chem. 2018;293:7549–7563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Sladek R, Rocheleau G, Rung J, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445:881–885.

    Article  CAS  PubMed  Google Scholar 

  165. Tamaki M, Fujitani Y, Hara A, et al. The diabetes-susceptible gene SLC30A8/ZnT8 regulates hepatic insulin clearance. J Clin Investig. 2013;123:4513–4524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kleiner S, Gomez D, Megra B, et al. Mice harboring the human SLC30A8 R138X loss-of-function mutation have increased insulin secretory capacity. Proc Natl Acad Sci USA. 2018;115:E7642–E7649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Ding M, Chavarro J, Olsen S, et al. Genetic variants of gestational diabetes mellitus: a study of 112 SNPs among 8722 women in two independent populations. Diabetologia. 2018;61:1758–1768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kwak SH, Chae J, Lee S, et al. Nonsynonymous variants in PAX4 and GLP1R are associated with type 2 diabetes in an East Asian population. Diabetes. 2018;67:1892–1902.

    Article  CAS  PubMed  Google Scholar 

  169. Perez Y, Shorer Z, Liani-Leibson K, et al. SLC30A9 mutation affecting intracellular zinc homeostasis causes a novel cerebro-renal syndrome. Brain. 2017;140:928–939.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Quadri M, Federico A, Zhao T, et al. Mutations in SLC30A10 cause parkinsonism and dystonia with hypermanganesemia, polycythemia, and chronic liver disease. Am J Hum Genet. 2012;90:467–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Stamelou M, Tuschl K, Chong WK, et al. Dystonia with brain manganese accumulation resulting from SLC30A10 mutations: a new treatable disorder. Mov Disord. 2012;27:1317–1322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Some studies described herein were supported by grants from the Japan Society for the Promotion of Science (17K09373 to WO and 17H04011 to TF) and Vehicle Racing Commemorative Foundation (TF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Fukada.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohashi, W., Hara, T., Takagishi, T. et al. Maintenance of Intestinal Epithelial Homeostasis by Zinc Transporters. Dig Dis Sci 64, 2404–2415 (2019). https://doi.org/10.1007/s10620-019-05561-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-019-05561-2

Keywords

Navigation