Skip to main content

Advertisement

Log in

BATF Interference Blocks Th17 Cell Differentiation and Inflammatory Response in Hepatitis B Virus Transgenic Mice

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

B cell-activating transcription factor (BATF) contributes to Th17 cell differentiation and pathological inflammatory responses.

Aims

This study explored BATF as a regulator of Th17 differentiation in normal and hepatitis B virus (HBV) transgenic mice.

Methods

Normal mice were divided into control, short hairpin RNA (shRNA) scramble, and shRNA BATF groups. HBV transgenic mice were divided into control, entecavir, shRNA scramble, entecavir + vector control, entecavir + shRNA scramble, shRNA BATF, and entecavir + shRNA BATF groups. Serum concentrations of AST, ALT, HBV-DNA, BATF, IL-17, and IL-22 and Th17 cell frequencies in the liver were compared among the groups. Correlations of serum HBV surface antigen (HBsAg), e-antigen (HBeAg), and core antigen (HBcAg) concentrations with BATF mRNA expression and the proportion of Th17 cells in the livers of HBV transgenic mice were also analyzed.

Results

Serum AST, ALT, BATF, IL-17, and IL-22 concentrations and Th17 cell proportions were higher in HBV transgenic mice relative to normal controls. Positive correlations of the HBcAg concentration with BATF mRNA and the proportion of Th17 cells were observed in HBV transgenic mice. BATF interference reduced the proportion of Th17 cells and serum IL-17 and IL-22 concentrations and led to obvious downregulation of AST, ALT, BATF, IL-17, and IL-22 expression and a reduced proportion of Th17 cells when combined with entecavir.

Conclusion

HBV markedly upregulated BATF expression and promoted Th17 cell activation. By contrast, BATF interference significantly impeded the proliferation of Th17 cells and secretion of IL-17 and IL-22 while alleviating hepatic lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Seeger C, Mason WS. Hepatitis B virus biology. Microbiol Mol Biol Rev. 2000;64:51–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cui Y, Jia J. Update on epidemiology of hepatitis B and C in China. J Gastroenterol Hepatol. 2013;28:7–10.

    Article  PubMed  Google Scholar 

  3. Yang S, Yu C, Chen P, et al. Protective immune barrier against hepatitis B is needed in individuals born before infant HBV vaccination program in China. Sci Rep. 2015;5:18334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhao RR, Yang XF, Dong J, et al. Toll-like receptor 2 promotes T helper 17 cells response in hepatitis B virus infection. Int J Clin Exp Med. 2015;8:7315–7323.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ge J, Wang K, Meng QH, Qi ZX, Meng FL, Fan YC. Implication of Th17 and Th1 cells in patients with chronic active hepatitis B. J Clin Immunol. 2010;30:60–67.

    Article  CAS  PubMed  Google Scholar 

  6. Williams KL, Nanda I, Lyons GE, et al. Characterization of murine BATF: a negative regulator of activator protein-1 activity in the thymus. Eur J Immunol. 2001;31:1620–1627.

    Article  CAS  PubMed  Google Scholar 

  7. Martinez GJ, Dong C. BATF: bringing (in) another Th17-regulating factor. J Mol Cell Biol. 2009;1:66–68.

    Article  CAS  PubMed  Google Scholar 

  8. Miao T, Raymond M, Bhullar P, et al. Early growth response gene-2 controls IL-17 expression and Th17 differentiation by negatively regulating Batf. J Immunol. 2013;190:58–65.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang Z, Pan Q, Duan XY, et al. Fatty liver reduces hepatitis B virus replication in a genotype B hepatitis B virus transgenic mice model. J Gastroenterol Hepatol. 2012;27:1858–1864.

    Article  CAS  PubMed  Google Scholar 

  10. Guidotti LG, Matzke B, Schaller H, Chisari FV. High-level hepatitis B virus replication in transgenic mice. J Virol. 1995;69:6158–6169.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Pan CQ, Zhang JX. Natural history and clinical consequences of hepatitis B virus infection. Int J Med Sci. 2005;2:36–40.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Te HS, Jensen DM. Epidemiology of hepatitis B and C viruses: a global overview. Clin Liver Dis. 2010;14:1–21.

    Article  PubMed  Google Scholar 

  13. Butt AA. Hepatitis C virus infection: the new global epidemic. Expert Rev Anti Infect Ther. 2005;3:241–249.

    Article  CAS  PubMed  Google Scholar 

  14. Yu R, Fan R, Hou J. Chronic hepatitis B virus infection: epidemiology, prevention, and treatment in China. Front Med. 2014;8:135–144.

    Article  PubMed  Google Scholar 

  15. Yan YP, Su HX, Ji ZH, Shao ZJ, Pu ZS. Epidemiology of hepatitis B virus infection in China: current status and challenges. J Clin Transl Hepatol. 2014;2:15–22.

    PubMed  PubMed Central  Google Scholar 

  16. Busca A, Kumar A. Innate immune responses in hepatitis B virus (HBV) infection. Virol J. 2014;11:22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yousfi N, Hattaf K, Tridane A. Modeling the adaptive immune response in HBV infection. J Math Biol. 2011;63:933–957.

    Article  PubMed  Google Scholar 

  18. Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005;6:1133–1141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang Z, Zhang JY, Wang LF, Wang FS. Immunopathogenesis and prognostic immune markers of chronic hepatitis B virus infection. J Gastroenterol Hepatol. 2012;27:223–230.

    Article  CAS  PubMed  Google Scholar 

  20. Ouyang W, Kolls JK, Zheng Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity. 2008;28:454–467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang JY, Zhang Z, Lin F, et al. Interleukin-17-producing CD4(+) T cells increase with severity of liver damage in patients with chronic hepatitis B. Hepatology. 2010;51:81–91.

    Article  CAS  PubMed  Google Scholar 

  22. Meng F, Wang K, Aoyama T, et al. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology. 2012;143:e761–e763.

    Article  CAS  Google Scholar 

  23. Wang B, Zhao XP, Fan YC, Zhang JJ, Zhao J, Wang K. IL-17A but not IL-22 suppresses the replication of hepatitis B virus mediated by over-expression of MxA and OAS mRNA in the HepG2.2.15 cell line. Antiviral Res. 2013;97:285–292.

    Article  CAS  PubMed  Google Scholar 

  24. Kurachi M, Barnitz RA, Yosef N, et al. The transcription factor BATF operates as an essential differentiation checkpoint in early effector CD8+T cells. Nat Immunol. 2014;15:373–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dunsford HA, Sell S, Chisari FV. Hepatocarcinogenesis due to chronic liver cell injury in hepatitis B virus transgenic mice. Cancer Res. 1990;50:3400–3407.

    CAS  PubMed  Google Scholar 

  26. Galli A, Ceni E, Mello T, et al. Thiazolidinediones inhibit hepatocarcinogenesis in hepatitis B virus-transgenic mice by peroxisome proliferator-activated receptor gamma-independent regulation of nucleophosmin. Hepatology. 2010;52:493–505.

    Article  CAS  PubMed  Google Scholar 

  27. Feng H, Yin J, Han YP, et al. Regulatory T cells and IL-17(+) T helper cells enhanced in patients with chronic hepatitis B virus infection. Int J Clin Exp Med. 2015;8:8674–8685.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang JY, Song CH, Shi F, Zhang Z, Fu JL, Wang FS. Decreased ratio of Treg cells to Th17 cells correlates with HBV DNA suppression in chronic hepatitis B patients undergoing entecavir treatment. PLoS ONE. 2010;5:e13869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Meyer NP, Johansen LM, Tae HJ, Budde PP, Williams KL, Taparowsky EJ. Genomic organization of human B-ATF, a target for regulation by EBV and HTLV-1. Mamm Genome. 1998;9:849–852.

    Article  CAS  PubMed  Google Scholar 

  30. Grusdat M, McIlwain DR, Xu HC, et al. IRF4 and BATF are critical for CD8(+) T-cell function following infection with LCMV. Cell Death Differ. 2014;21:1050–1060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tian ZF, You ZL, Yi H, Kuang XM, Wang YM. Effect of entecavir on CD4+T-cell subpopulations in patients with chronic hepatitis B. Ann Hepatol. 2016;15:174–182.

    CAS  PubMed  Google Scholar 

  32. Niu YH, Yin DL, Liu HL, et al. Restoring the Treg cell to Th17 cell ratio may alleviate HBV-related acute-on-chronic liver failure. World J Gastroenterol. 2013;19:4146–4154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the grants from National Natural Science Foundation of China (81171579, 81201287, 81300318, and 81371832), Key Project of Chinese Ministry of Science and Technology (2012ZX10002007 and 2013ZX10002001), and Science and Technology Development Plan of Shandong Province (2014GSF118068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All mouse experiments were approved by the Institutional Animal Care and Use Committee (KYLL-2017(KS)-076).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, LY., Fan, XP., Fan, YC. et al. BATF Interference Blocks Th17 Cell Differentiation and Inflammatory Response in Hepatitis B Virus Transgenic Mice. Dig Dis Sci 64, 773–780 (2019). https://doi.org/10.1007/s10620-018-5392-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-018-5392-x

Keywords

Navigation