Skip to main content

Advertisement

Log in

Microbiome: An Emerging New Frontier in Graft-Versus-Host Disease

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Hematopoietic cell transplantation is an intensive therapy used to treat high-risk hematological malignant disorders and other life-threatening hematological and genetic diseases. Graft-versus-host disease (GVHD) presents a barrier to its wider application. A conditioning regimen and medications given to patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HCT) are capable of disturbing the homeostatic crosstalk between the microbiome and the host immune system and of leading to dysbiosis. Intestinal inflammation in the context of GVHD is associated with loss in microbial diversity that could serve as an independent predictor of mortality. Successful gastrointestinal decontamination using high doses of non-absorbable antibiotics likely affect allo-HCT outcomes leading to significantly less acute GVHD (aGVHD). Butyrate-producing Clostridia directly result in the increased presence of regulatory T cells in the gut, which are protective in GVHD development. Beyond the microbiome, Candida, a member of the mycobiome, colonization in the gut has been considered as a risk factor in pathophysiology of aGVHD and reduction in GVHD is observed with antifungal prophylaxis with fluconazole. Reduced number of goblet cells and Paneth cells have been shown to associate with GVHD and has a significant impact on the micro- and mycobiome density and their composition. Lower levels of 3-indoxyl sulfate at initial stages after allo-HCT are related with worse GVHD outcomes and increased mortality. Increased understanding of the vital role of the gut microbiome in GVHD can give directions to move the field towards the development of improved innovative approaches for preventing or treating GVHD following allo-HCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489:220–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang WL, Xu SY, Ren ZG, Tao L, Jiang JW, Zheng SS. Application of metagenomics in the human gut microbiome. World J Gastroenterol. 2015;21:803–814.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chow J, Tang H, Mazmanian SK. Pathobionts of the gastrointestinal microbiota and inflammatory disease. Curr Opin Immunol. 2011;23:473–480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gomez C, Chanez P. The lung microbiome: the perfect culprit for COPD exacerbations? Eur Respir J. 2016;47:1034–1036.

    Article  CAS  PubMed  Google Scholar 

  5. Kaser A, Zeissig S, Blumberg RS. Inflammatory bowel disease. Ann Rev Immunol. 2010;28:573–621.

    Article  CAS  Google Scholar 

  6. Ferrara JL, Reddy P. Pathophysiology of graft-versus-host disease. Semin Hematol. 2006;43:3–10.

    Article  CAS  PubMed  Google Scholar 

  7. Ferrara JL, Levine JE, Reddy P, Holler E. Graft-versus-host disease. Lancet (London, England). 2009;373:1550–1561.

    Article  CAS  Google Scholar 

  8. Teshima T, Reddy P, Zeiser R. Acute Graft-versus-Host Disease: Novel Biological Insights. Biol Blood Marrow Transpl. 2016;22:11–16.

    Article  CAS  Google Scholar 

  9. Taur Y, Jenq RR, Perales MA, et al. The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood. 2014;124:1174–1182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen Y, Zhao Y, Cheng Q, Wu D, Liu H. The role of intestinal microbiota in acute graft-versus-host disease. J Immunol Res. 2015;2015:145859.

    PubMed  PubMed Central  Google Scholar 

  11. Mathewson N, Reddy P. Sugar polymers exacerbate lung GVHD. Blood. 2015;125:2883–2884.

    Article  CAS  PubMed  Google Scholar 

  12. Peled JU, Devlin SM, Staffas A, et al. Intestinal microbiota and relapse after hematopoietic-cell transplantation. J Clin Oncol. 2017;35:1650–1659.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Andermann T, Peled J, Ho C, et al. Microbiome-host interactions in hematopoietic stem cell transplant recipients. Biol Blood Marrow Transplant. 2018;24:1322–1340.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jenq RR, Ubeda C, Taur Y, et al. Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. J Exp Med. 2012;209:903–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jenq RR, Taur Y, Devlin SM, et al. Intestinal blautia is associated with reduced death from graft-versus-host disease. Biol Blood Marrow Transplant. 2015;21:1373–1383.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tawara I, Liu C, Tamaki H, et al. Influence of donor microbiota on the severity of experimental graft-versus-host-disease. Biol Blood Marrow Transplant. 2013;19:164–168.

    Article  PubMed  Google Scholar 

  17. Knight P, Campbell BJ, Rhodes JM. Host-bacteria interaction in inflammatory bowel disease. Br Med Bull. 2008;88:95–113.

    Article  CAS  PubMed  Google Scholar 

  18. Holler E, Butzhammer P, Schmid K, et al. Metagenomic analysis of the stool microbiome in patients receiving allogeneic stem cell transplantation: loss of diversity is associated with use of systemic antibiotics and more pronounced in gastrointestinal graft-versus-host disease. Biol Blood Marrow Transplant. 2014;20:640–645.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Junghanss C, Marr KA, Carter RA, et al. Incidence and outcome of bacterial and fungal infections following nonmyeloablative compared with myeloablative allogeneic hematopoietic stem cell transplantation: a matched control study. Biol Blood Marrow Transplant. 2002;8:512–520.

    Article  Google Scholar 

  20. Kamboj M, Chung D, Seo SK, et al. The changing epidemiology of vancomycin-resistant Enterococcus (VRE) bacteremia in allogeneic hematopoietic stem cell transplant (HSCT) recipients. Biol Blood Marrow Transplant. 2010;16:1576–1581.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Taur Y, Xavier JB, Lipuma L, et al. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infect Dis. 2012;55:905–914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ponce DM, Gomes A, Dierov D, et al. High intestinal microbiota diversity is associated with sparing of the lower GI tract in acute Gvhd patients. Biol Blood Marrow Transplant. 2018;24:S66–S67.

    Article  Google Scholar 

  23. Anasetti C, Logan BR, Lee SJ, et al. Peripheral-blood stem cells versus bone marrow from unrelated donors. N Engl J Med. 2012;367:1487–1496.

    Article  CAS  PubMed  Google Scholar 

  24. Yan H, Baldridge MT. Hematopoiesis and the bacterial microbiome. Blood. 2018;132:559–564.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Iwamura C, Bouladoux N, Belkaid Y, Sher A, Jankovic D. Sensing of the microbiota by NOD1 in mesenchymal stromal cells regulates murine hematopoiesis. Blood. 2017;129:171–176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kumari RPS, Hildebrandt GC. The human microbiome in hematologic malignancies. Hematol Transfus Int J. 2016;2:3.

    Google Scholar 

  27. Gerbitz A, Schultz M, Wilke A, et al. Probiotic effects on experimental graft-versus-host disease: let them eat yogurt. Blood. 2004;103:4365–4367.

    Article  CAS  PubMed  Google Scholar 

  28. Josefsdottir KS, Baldridge MT, Kadmon CS, King KY. Antibiotics impair murine hematopoiesis by depleting the intestinal microbiota. Blood. 2017;129:729–739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Palaniyandi S, Radhakrishnan SV, Karlsson FJ, et al. Murine cytomegalovirus immediate-early 1 gene expression correlates with increased GVHD after allogeneic hematopoietic cell transplantation in recipients reactivating from latent infection. PLoS ONE. 2018;8:e61841.

    Article  CAS  Google Scholar 

  30. Gratama JW, Sinnige LG, Weijers TF, et al. Marrow donor immunity to herpes simplex virus: association with acute graft-versus-host disease. Exp Hematol. 1987;15:735–740.

    CAS  PubMed  Google Scholar 

  31. Arthur RR, Shah KV, Charache P, Saral R. BK and JC virus infections in recipients of bone marrow transplants. J Infect Dis. 1988;158:563–569.

    Article  CAS  PubMed  Google Scholar 

  32. Williams WB, Liao HX, Moody MA, et al. HIV-1 VACCINES: Diversion of HIV-1 vaccine-induced immunity by gp41-microbiota cross-reactive antibodies. Science (New York, N.Y.). 2015;349:aab1253.

    Article  CAS  Google Scholar 

  33. Oh JZ, Ravindran R, Chassaing B, et al. TLR5-mediated sensing of gut microbiota is necessary for antibody responses to seasonal influenza vaccination. Immunity. 2014;41:478–492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pfeiffer JK, Virgin HW. Viral immunity: transkingdom control of viral infection and immunity in the mammalian intestine. Science (New York, N.Y.). 2016;351:aad5872.

    Article  CAS  Google Scholar 

  35. Kane M, Case LK, Kopaskie K, et al. Successful transmission of a retrovirus depends on the commensal microbiota. Science (New York, N.Y.). 2011;334:245–249.

    Article  CAS  Google Scholar 

  36. Kuss SK, Best GT, Etheredge CA, et al. Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science (New York, N.Y.). 2011;334:249–252.

    Article  CAS  Google Scholar 

  37. Robinson CM, Jesudhasan PR, Pfeiffer JK. Bacterial lipopolysaccharide binding enhances virion stability and promotes environmental fitness of an enteric virus. Cell Host Microbe. 2014;15:36–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Uchiyama R, Chassaing B, Zhang B, Gewirtz AT. Antibiotic treatment suppresses rotavirus infection and enhances specific humoral immunity. J Infect Dis. 2014;210:171–182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Roddie C, Paul JP, Benjamin R, et al. Allogeneic hematopoietic stem cell transplantation and norovirus gastroenteritis: a previously unrecognized cause of morbidity. Clin Infect Dis. 2009;49:1061–1068.

    Article  CAS  PubMed  Google Scholar 

  40. Hassan IA, Chopra R, Swindell R, Mutton KJ. Respiratory viral infections after bone marrow/peripheral stem-cell transplantation: the Christie hospital experience. Bone Marrow Transplant. 2003;32:73–77.

    Article  CAS  PubMed  Google Scholar 

  41. van der Velden WJ, Plantinga TS, Feuth T, Donnelly JP, Netea MG, Blijlevens NM. The incidence of acute graft-versus-host disease increases with Candida colonization depending the dectin-1 gene status. Clin Immunol (Orlando, FL). 2010;136:302–306.

    Article  CAS  Google Scholar 

  42. van der Velden WJFM, Plantinga T, Feuth T, Donnelly P, Netea M, Blijlevens NNA. No impact of dectin-1 polymorphism Y238X on the outcome of hematopoietic stem cell transplantation, but a role for Candida in acute graft-versus-host disease. Blood. 2009;114:4498.

    Google Scholar 

  43. Safdar A. Strategies to enhance immune function in hematopoietic transplantation recipients who have fungal infections. Bone Marrow Transplant. 2006;38:327–337.

    Article  CAS  PubMed  Google Scholar 

  44. Beck O, Topp MS, Koehl U, et al. Generation of highly purified and functionally active human TH1 cells against Aspergillus fumigatus. Blood. 2006;107:2562–2569.

    Article  CAS  PubMed  Google Scholar 

  45. Marr KA, Carter RA, Crippa F, Wald A, Corey L. Epidemiology and outcome of mould infections in hematopoietic stem cell transplant recipients. Clin Infect Dis. 2002;34:909–917.

    Article  PubMed  Google Scholar 

  46. Morgan J, Wannemuehler KA, Marr KA, et al. Incidence of invasive aspergillosis following hematopoietic stem cell and solid organ transplantation: interim results of a prospective multicenter surveillance program. Med Mycol. 2005;43:S49–S58.

    Article  PubMed  Google Scholar 

  47. Ribaud P, Chastang C, Latge JP, et al. Survival and prognostic factors of invasive aspergillosis after allogeneic bone marrow transplantation. Clin Infect Dis. 1999;28:322–330.

    Article  CAS  PubMed  Google Scholar 

  48. Kontoyiannis DP, Lionakis MS, Lewis RE, et al. Zygomycosis in a tertiary-care cancer center in the era of Aspergillus-active antifungal therapy: a case-control observational study of 27 recent cases. J Infect Dis. 2005;191:1350–1360.

    Article  PubMed  Google Scholar 

  49. Weber D, Oefner PJ, Dettmer K, et al. Rifaximin preserves intestinal microbiota balance in patients undergoing allogeneic stem cell transplantation. Bone Marrow Transplant. 2016;51:1087–1092.

    Article  CAS  PubMed  Google Scholar 

  50. Steck N, Hoffmann M, Sava IG, et al. Enterococcus faecalis metalloprotease compromises epithelial barrier and contributes to intestinal inflammation. Gastroenterology. 2011;141:959–971.

    Article  CAS  PubMed  Google Scholar 

  51. Stein-Thoeringer C, Peled JU, Lazrak A, et al. Domination of the gut microbiota with Enterococcus species early after allogeneic bone marrow transplantation is an important contributor to the development of acute graft-versus-host disease (GHVD) in mouse and man. Biol Blood Marrow Transplant. 2018;24:S40–S41.

    Article  Google Scholar 

  52. Vossen JM, Guiot HF, Lankester AC, et al. Complete suppression of the gut microbiome prevents acute graft-versus-host disease following allogeneic bone marrow transplantation. PLoS ONE. 2014;9:e105706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chakrabarti S, Lees A, Jones SG, Milligan DW. Clostridium difficile infection in allogeneic stem cell transplant recipients is associated with severe graft-versus-host disease and non-relapse mortality. Bone Marrow Transplant. 2000;26:871–876.

    Article  CAS  PubMed  Google Scholar 

  54. Kinnebrew MA, Lee YJ, Jenq RR, et al. Early Clostridium difficile infection during allogeneic hematopoietic stem cell transplantation. PLoS ONE. 2014;9:e90158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Borody TJ. “Floor Power”—fecal bacteria cure chronic C. difficile diarrhea. Am J Gastroenterol. 2000;95:3028–3029.

    CAS  PubMed  Google Scholar 

  56. van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013;368:407–415.

    Article  CAS  PubMed  Google Scholar 

  57. van Lier YF, de Groot PF, Nur E, et al. Fecal microbiota transplantation as safe and successful therapy for intestinal graft-versus-host disease. Blood. 2017;130:1986.

    Google Scholar 

  58. Kumari R, Ahuja V, Paul J. Fluctuations in butyrate-producing bacteria in ulcerative colitis patients of North India. World J Gastroenterol. 2013;19:3404–3414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kumari RVN, Paul J. Potential contribution of microbiome in neurodegenerative diseases: Alzheimer’s disease. Inflamm Cell Signal. 2017;4:58.

    Google Scholar 

  60. Reddy P, Sun Y, Toubai T, et al. Histone deacetylase inhibition modulates indoleamine 2,3-dioxygenase-dependent DC functions and regulates experimental graft-versus-host disease in mice. J Clin Investig. 2008;118:2562–2573.

    CAS  PubMed  Google Scholar 

  61. Canani RB, Costanzo MD, Leone L, Pedata M, Meli R, Calignano A. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol. 2011;17:1519–1528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Romick-Rosendale L, Haslam D, Lane A, et al. Short chain fatty acids are reduced after hematopoietic stem cell transplant in humans and are associated with modifications of the gut microbiome. Biol Blood Marrow Transplant. 2018;24:S87–S88.

    Article  Google Scholar 

  63. Mathewson ND, Jenq R, Mathew AV, et al. Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nat Immunol. 2016;17:505–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Atarashi K, Tanoue T, Oshima K, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013;500:232–236.

    Article  CAS  Google Scholar 

  65. Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504:446–450.

    Article  CAS  PubMed  Google Scholar 

  66. Dant TA, Lin KL, Bruce DW, et al. T-cell expression of AhR inhibits the maintenance of pTreg cells in the gastrointestinal tract in acute GVHD. Blood. 2017;130:348–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Edinger M, Powrie F, Chakraverty R. Regulatory mechanisms in graft-versus-host responses. Biol Blood Marrow Transplant. 2009;15:2–6.

    Article  PubMed  Google Scholar 

  68. Berstad A, Raa J, Valeur J. Indole - the scent of a healthy ‘inner soil’. Microb Ecol Health Dis. 2015;26:27997.

    PubMed  Google Scholar 

  69. Weber D, Jenq RR, Peled JU, et al. Microbiota disruption induced by early use of broad-spectrum antibiotics is an independent risk factor of outcome after allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2017;23:845–852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rayes A, Morrow AL, Payton LR, Lake KE, Lane A, Davies SM. A genetic modifier of the gut microbiome influences the risk of graft-versus-host disease and bacteremia after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2016;22:418–422.

    Article  PubMed  Google Scholar 

  71. Wacklin P, Tuimala J, Nikkila J, et al. Faecal microbiota composition in adults is associated with the FUT2 gene determining the secretor status. PLoS ONE. 2014;9:e94863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wacklin P, Makivuokko H, Alakulppi N, et al. Secretor genotype (FUT2 gene) is strongly associated with the composition of Bifidobacteria in the human intestine. PLoS ONE. 2011;6:e20113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pelaseyed T, Bergstrom JH, Gustafsson JK, et al. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol Rev. 2014;260:8–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Penack O, Henke E, Suh D, et al. Inhibition of neovascularization to simultaneously ameliorate graft-vs-host disease and decrease tumor growth. J Natl Cancer Inst. 2010;102:894–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Maynard CL, Elson CO, Hatton RD, Weaver CT. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012;489:231–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Eriguchi Y, Takashima S, Oka H, et al. Graft-versus-host disease disrupts intestinal microbial ecology by inhibiting Paneth cell production of alpha-defensins. Blood. 2012;120:223–231.

    Article  CAS  PubMed  Google Scholar 

  77. Levine JE, Huber E, Hammer ST, et al. Low Paneth cell numbers at onset of gastrointestinal graft-versus-host disease identify patients at high risk for nonrelapse mortality. Blood. 2013;122:1505–1509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cerf-Bensussan N, Gaboriau-Routhiau V. The immune system and the gut microbiota: friends or foes? Nat Rev Immunol. 2010;10:735–744.

    Article  CAS  PubMed  Google Scholar 

  79. Crawford PA, Gordon JI. Microbial regulation of intestinal radiosensitivity. Proc Natl Acad Sci USA. 2005;102:13254–13259.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Carl Hildebrandt.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, R., Palaniyandi, S. & Hildebrandt, G.C. Microbiome: An Emerging New Frontier in Graft-Versus-Host Disease. Dig Dis Sci 64, 669–677 (2019). https://doi.org/10.1007/s10620-018-5369-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-018-5369-9

Keywords

Navigation