Clinician Guide to Microbiome Testing

Abstract

Recent recognition that the intestinal microbiome plays potential roles in the pathogenesis of multiple common diseases has led to a growing interest in personalized microbiome analysis among clinical investigators and patients. Permissibility of direct access testing has allowed the emergence of commercial companies offering microbiome analysis to patients seeking to gain a better understanding of their symptoms and disease conditions. In turn, physicians are often asked to help with interpretation of such tests or even requested by their patients to order them. Therefore, physicians need to have a basic understanding of the current state of microbiome science. This review examines how the perspective of microbial ecology, which is fundamental to understanding the microbiome, updates the classical version of the germ theory of disease. We provide the essential vocabulary of microbiome science and describe its current limitations. We look forward to the future when microbiome diagnostics may live up to its potential of becoming integral to clinical care that will become increasingly individualized, and microbiome analysis may become incorporated into that future paradigm. However, we caution patients and providers that the current microbiome tests, given the state of knowledge and technology, do not provide much value in clinical decisions. Considerable research remains to be carried out to make this objective a reality.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Marchesi JR, Adams DH, Fava F, et al. The gut microbiota and host health: a new clinical frontier. Gut. 2016;65:330–339. https://doi.org/10.1136/gutjnl-2015-309990.

    Article  PubMed  Google Scholar 

  2. 2.

    van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013;368:407–415. https://doi.org/10.1056/NEJMoa1205037.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Newman KM, Rank KM, Vaughn BP, Khoruts A. Treatment of recurrent Clostridium difficile infection using fecal microbiota transplantation in patients with inflammatory bowel disease. Gut Microbes. 2017; in press. https://doi.org/10.1080/19490976.2017.1279377.

    Article  Google Scholar 

  4. 4.

    Kelly C, Khoruts A, Staley C, et al. Effect of fecal microbiota transplantation on recurrence in multiply recurrent Clostridium difficile infection: a randomized trial. Ann Intern Med. 2016;165:609–616. https://doi.org/10.7326/M16-0271.

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Sadowsky MJ, Khoruts A. Faecal microbiota transplantation is promising but not a panacea. Nat Microbiol. 2016;1:16015. https://doi.org/10.1038/nmicrobiol.2016.15.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Staley C, Khoruts A, Sadowsky MJ. Contemporary applications of fecal microbiota transplantation to treat intestinal diseases in humans. Arch Med Res. 2017;48:766–773. https://doi.org/10.1016/j.arcmed.2017.11.006.

    Article  PubMed  Google Scholar 

  7. 7.

    Haiser HJ, Gootenberg DB, Chatman K, et al. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science. 2013;341:295–298. https://doi.org/10.1126/science.1235872.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Maier L, Pruteanu M, Kuhn M, et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature. 2018;555:623–628. https://doi.org/10.1038/nature25979.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Bordenave G. Louis Pasteur (1822–1895). Microbes Infect. 2003;5:553–560. https://doi.org/10.1016/S1286-4579(03)00075-3.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Koch R. Die aetiologie der tuberkulose. Berliner Klin Wochenschrift. 1882;15:221–230.

    Google Scholar 

  11. 11.

    Bantock GG. The modern doctrine of bacteriology, or the germ theory of disease. Br Med J. 1899;1:846–848.

    CAS  Article  Google Scholar 

  12. 12.

    Podolsky SH. Metchnikoff and the microbiome. Lancet. 2012;380:1810–1811.

    Article  Google Scholar 

  13. 13.

    Metchnikoff E. The Prolongation of Life: Optimistic Studies. New York: Putnams; 1910.

    Google Scholar 

  14. 14.

    Kellogg JH. The New Dietetics. Battle Creek: Modern Medicine; 1921.

    Google Scholar 

  15. 15.

    Lane WA. The results of the operative treatment of chronic constipation. Br Med J. 1908;1:126–130.

    CAS  Article  Google Scholar 

  16. 16.

    Fisberg M, Machado R. History of yogurt and current patterns of consumption. Nutr Rev. 2015;73:4–7. https://doi.org/10.1093/nutrit/nuv020.

    Article  PubMed  Google Scholar 

  17. 17.

    Mackowiak PA. Recycling Metchnikoff: probiotics, the intestinal microbiome and the quest for long life. Front Public Heal. 2013;1:52. https://doi.org/10.3389/fpubh.2013.00052.

    Article  Google Scholar 

  18. 18.

    Furuya-Kanamori L, Marquess J, Yakob L, et al. Asymptomatic Clostridium difficile colonization: epidemiology and clinical implications. BMC Infect Dis. 2015;15:516. https://doi.org/10.1186/s12879-015-1258-4.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Human Microbiome Project Consortium. A framework for human microbiome research. Nature. 2012;486:215–221. https://doi.org/10.1038/nature11209.

    CAS  Article  Google Scholar 

  20. 20.

    Lloyd-Price J, Mahurkar A, Rahnavard G, et al. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature. 2017;550:61–66. https://doi.org/10.1038/nature23889.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Byndloss MX, Bäumler AJ. The germ-organ theory of non-communicable diseases. Nat Rev Microbiol. 2018;16:103–110. https://doi.org/10.1038/nrmicro.2017.158.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Staley JT, Konopka A. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol. 1985;39:321–346. https://doi.org/10.1146/annurev.mi.39.100185.001541.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995;59:143–169.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Nicholson JK, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions. Science. 2012;336:1262–1267. https://doi.org/10.1126/science.1223813.

    CAS  Article  Google Scholar 

  25. 25.

    Reeves AE, Theriot CM, Bergin IL, et al. The interplay between microbiome dynamics and pathogen dynamics in a murine model of Clostridium difficile infection. Gut Microbes. 2014;2:145–158. https://doi.org/10.4161/gmic.2.3.16333.

    Article  Google Scholar 

  26. 26.

    Dethlefsen L, Huse S, Sogin ML, Relman DA. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 2008;6:e280. https://doi.org/10.1371/journal.pbio.0060280.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci USA. 2011;108:4554–4561. https://doi.org/10.1073/pnas.1000087107.

    Article  PubMed  Google Scholar 

  28. 28.

    Huang SS, Septimus E, Kleinman K, et al. Targeted versus universal decolonization to prevent ICU infection. N Engl J Med. 2013;368:2255–2265. https://doi.org/10.1056/NEJMoa1207290.

    Article  PubMed  Google Scholar 

  29. 29.

    Nakatsuji T, Chen TH, Narala S, et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Transl Med. 2017. https://doi.org/10.1126/scitranslmed.aah4680.

    Article  Google Scholar 

  30. 30.

    Lax S, Sangwan N, Smith D, et al. Bacterial colonization and succession of hospital-associated microbiota. Sci Transl Med. 2017. https://doi.org/10.1126/scitranslmed.aah6500.

    Article  Google Scholar 

  31. 31.

    Ronaghi M, Uhlén M, Nyrén P. A sequencing method based on real-time pyrophosphate. Science. 1998;281:363–365.

    CAS  Article  Google Scholar 

  32. 32.

    Margulies M, Egholm M, Altman WE, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437:376–380. https://doi.org/10.1038/nature03959.

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol. 1998;5:R245–R249. https://doi.org/10.1016/S1074-5521(98)90108-9.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Sogin ML, Morrison HG, Huber JA, et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA. 2006;103:12115–12120.

    CAS  Article  Google Scholar 

  35. 35.

    Rinke C, Schwientek P, Sczyrba A, et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature. 2013;499:431–437. https://doi.org/10.1038/nature12352.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Staley C, Sadowsky MJ. Application of metagenomics to assess microbial communities in water and other environmental matrices. J Mar Biol Assoc UK. 2016;96:121–129. https://doi.org/10.1017/S0025315415001496.

    Article  Google Scholar 

  37. 37.

    Ellison AM. Partitioning diversity. Ecology. 2010;91:1962–1963. https://doi.org/10.1890/09-1692.1.

    Article  PubMed  Google Scholar 

  38. 38.

    Simpson EH. Measurement of diversity. Nature. 1949;163:688. https://doi.org/10.1038/163688a0.

    Article  Google Scholar 

  39. 39.

    Shannon CE, Weaver W. The Mathematical Theory of Communication. Urbana: The University of Illinois Press; 1949.

    Google Scholar 

  40. 40.

    Bent SJ, Forney LJ. The tragedy of the uncommon: understanding limitations in the analysis of microbial diversity. ISME J. 2008;2:689–695. https://doi.org/10.1038/ismej.2008.44.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Holmes I, Harris K, Quince C, McInnes P, Wang L. Dirichlet multinomial mixtures: generative models for microbial metagenomics. PLoS ONE. 2012;7:e30126. https://doi.org/10.1371/journal.pone.0030126.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJ. Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol. 2001;67:4399–4406. https://doi.org/10.1128/AEM.67.10.4399-4406.2001.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Chao A. Non-parametric estimation of the number of classes in a population. Scand J Stat. 1984;11:265–270.

    Google Scholar 

  44. 44.

    Chao A, Lee S-M. Estimating the number of classes via sample coverage. J Am Stat Assoc. 1992;87:210–217. https://doi.org/10.1080/01621459.1992.10475194.

    Article  Google Scholar 

  45. 45.

    Bray JR, Curtis JT. An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr. 1957;27:325–349.

    Article  Google Scholar 

  46. 46.

    Chao A, Chazdon RL, Colwell RK, Shen T-J. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett. 2004;8:148–159. https://doi.org/10.1111/j.1461-0248.2004.00707.x.

    Article  Google Scholar 

  47. 47.

    Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71:8228–8235.

    CAS  Article  Google Scholar 

  48. 48.

    Martin AP. Phylogenetic approaches for describing and comparing the diversity of microbial communities. Appl Environ Microbiol. 2002;68:3673–3682. https://doi.org/10.1128/AEM.68.8.3673-3682.2002.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Martiny AC, Treseder K, Pusch G. Phylogenetic conservatism of functional traits in microorganisms. ISME J. 2013;7:830–838. https://doi.org/10.1038/ismej.2012.160.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489:220–230. https://doi.org/10.1038/nature11550.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–227. https://doi.org/10.1038/nature11053.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Sonnenburg ED, Sonnenburg JL. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 2014;20:779–786. https://doi.org/10.1016/J.CMET.2014.07.003.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Guarner F. Hygiene, microbial diversity and immune regulation. Curr Opin Gastroenterol. 2007;23:667–672. https://doi.org/10.1097/MOG.0b013e3282eeb43b.

    Article  PubMed  Google Scholar 

  54. 54.

    Claesson MJ, O’Sullivan O, Wang Q, et al. Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS ONE. 2009;4:e6669. https://doi.org/10.1371/journal.pone.0006669.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Earth Microbiome Project Consortium. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551:457. https://doi.org/10.1038/nature24621.

    CAS  Article  Google Scholar 

  56. 56.

    Keesing F, Belden LK, Daszak P, et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature. 2010;468:647–652. https://doi.org/10.1038/nature09575.

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Zhang H, Sparks JB, Karyala SV, Settlage R, Luo XM. Host adaptive immunity alters gut microbiota. ISME J. 2015;9:770–781. https://doi.org/10.1038/ismej.2014.165.

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Lee SC, Tang MS, Lim YAL, et al. Helminth colonization is associated with increased diversity of the gut microbiota. PLoS Negl Trop Dis. 2014;8:e2880. https://doi.org/10.1371/journal.pntd.0002880.

    Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Audebert C, Even G, Cian A, et al. Colonization with the enteric protozoa Blastocystis is associated with increased diversity of human gut bacterial microbiota. Sci Rep. 2016;6:25255. https://doi.org/10.1038/srep25255.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiom in obese and lean twins. Nature. 2009;457:480–484. https://doi.org/10.1038/nature07540.A.

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Ott SJ, Musfeldt M, Wenderoth DF, et al. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut. 2004;53:685–693. https://doi.org/10.1136/GUT.2003.025403.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science. 2005;308:1635–1638. https://doi.org/10.1126/science.1110591.

    Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Caporaso JG, Lauber CL, Costello EK, et al. Moving pictures of the human microbiome. Genome Biol. 2011;12:R50. https://doi.org/10.1186/gb-2011-12-5-r50.

    Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Tap J, Mondot S, Levenez F, et al. Towards the human intestinal microbiota phylogenetic core. Environ Microbiol. 2009;11:2574–2584. https://doi.org/10.1111/j.1462-2920.2009.01982.x.

    Article  PubMed  Google Scholar 

  65. 65.

    Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature. 2011;473:174–180. https://doi.org/10.1038/nature09944.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Jeffery IB, Claesson MJ, O’Toole PW, Shanahan F. Categorization of the gut microbiota: enterotypes or gradients? Nat Rev Microbiol. 2012;10:591–592. https://doi.org/10.1038/nrmicro2859.

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Knights D, Ward TL, McKinlay CE, et al. Rethinking “Enterotypes”. Cell Host Microbe. 2014;16:433–437. https://doi.org/10.1016/j.chom.2014.09.013.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Gilbert JA, Dupont CL. Microbial metagenomics: beyond the genome. Annu Rev Mar Sci. 2011;3:347–371. https://doi.org/10.1146/annurev-marine-120709-142811.

    Article  Google Scholar 

  69. 69.

    Claesson MJ, Wang QO, O’Sullivan O, et al. Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res. 2010. https://doi.org/10.1093/nar/gkq873.

    Article  Google Scholar 

  70. 70.

    Youssef N, Sheik CS, Krumholz LR, et al. Comparison of species richness estimates obtained using nearly complete fragments and simulated pyrosequencing-generated fragments in 16S rRNA gene-based environmental surveys. Appl Environ Microbiol. 2009;75:5227–5236. https://doi.org/10.1128/AEM.00592-09.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Mizrahi-Man O, Davenport ER, Gilad Y. Taxonomic classification of bacterial 16S rRNA genes using short sequencing reads: evaluation of effective study designs. PLoS ONE. 2013;8:e53608. https://doi.org/10.1371/journal.pone.0053608.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9:313–323. https://doi.org/10.1038/nri2515.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis. Nat Rev Microbiol. 2012;10:717–725. https://doi.org/10.1038/nrmicro2873.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Sommer F, Anderson JM, Bharti R, Raes J, Rosenstiel P. The resilience of the intestinal microbiota influences health and disease. Nat Rev Microbiol. 2017;15:630–638. https://doi.org/10.1038/nrmicro.2017.58.

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    Alverdy JC, Krezalek MA. Collapse of the microbiome, emergence of the pathobiome, and the immunopathology of sepsis. Crit Care Med. 2017;45:337–347. https://doi.org/10.1097/CCM.0000000000002172.

    Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Blander JM, Longman RS, Iliev ID, Sonnenberg GF, Artis D. Regulation of inflammation by microbiota interactions with the host. Nat Immunol. 2017;18:851–860. https://doi.org/10.1038/ni.3780.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Langille MGI, Zaneveld J, Caporaso JG, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31:814–821. https://doi.org/10.1038/nbt.2676.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Aßhauer KP, Wemheuer B, Daniel R, Meinicke P. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics. 2015;31:2882–2884. https://doi.org/10.1093/bioinformatics/btv287.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Franzosa EA, Hsu T, Sirota-Madi A, et al. Sequencing and beyond: integrating molecular “omics” for microbial community profiling. Nat Rev Microbiol. 2015;13:360–372. https://doi.org/10.1038/nrmicro3451.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Jovel J, Patterson J, Wang W, et al. Characterization of the gut microbiome using 16S or shotgun metagenomics. Front Microbiol. 2016;7:459. https://doi.org/10.3389/fmicb.2016.00459.

    Article  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Moran MA, Satinsky B, Gifford SM, et al. Sizing up metatranscriptomics. ISME J. 2013;7:237–243. https://doi.org/10.1038/ismej.2012.94.

    CAS  Article  PubMed  Google Scholar 

  82. 82.

    Verberkmoes NC, Russell AL, Shah M, et al. Shotgun metaproteomics of the human distal gut microbiota. ISME J. 2009;3:179–189. https://doi.org/10.1038/ismej.2008.108.

    CAS  Article  PubMed  Google Scholar 

  83. 83.

    Ellermann M, Carr JS, Fodor AA, Arthur JC, Carroll IM. Characterizing and Functionally Defining the Gut Microbiota: Methodology and Implications. In: Floch MH, Ringel Y, Walker WA, eds. Microbiota in Gastrointestinal Pathophysiology. London: Elsevier; 2017:15–25. https://doi.org/10.1016/b978-0-12-804024-9.00002-1.

    Google Scholar 

  84. 84.

    Almonacid DE, Kraal L, Ossandon FJ, et al. 16S rRNA gene sequencing and healthy reference ranges for 28 clinically relevant microbial taxa from the human gut microbiome. PLoS ONE. 2017;12:1–15. https://doi.org/10.1371/journal.pone.0176555.

    CAS  Article  Google Scholar 

  85. 85.

    Zmora N, Zeevi D, Korem T, Segal E, Elinav E. Taking it personally: personalized utilization of the human microbiome in health and disease. Cell Host Microbe. 2016;19:12–20. https://doi.org/10.1016/j.chom.2015.12.016.

    CAS  Article  PubMed  Google Scholar 

  86. 86.

    Shukla SK, Murali NS, Brilliant MH. Personalized medicine going precise: from genomics to microbiomics. Trends Mol Med. 2015;21:461–462. https://doi.org/10.1016/j.molmed.2015.06.002.

    Article  PubMed  PubMed Central  Google Scholar 

  87. 87.

    The Human Microbiome Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–214. https://doi.org/10.1038/nature11234.

    CAS  Article  Google Scholar 

  88. 88.

    Gevers D, Kugathasan S, Denson LA, et al. The treatment-naive microbiome in new-onset Crohn’s Disease. Cell Host Microbe. 2014;15:382–392. https://doi.org/10.1016/J.CHOM.2014.02.005.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Gevers D, Kugathasan S, Knights D, et al. A microbiome foundation for the study of Crohn’s Disease. Cell Host Microbe. 2017;21:301–304. https://doi.org/10.1016/J.CHOM.2017.02.012.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Le K, Somineni H, Venkateswaran S, et al. P150 Microbiome Risk Score (MRS) in the diagnosis and classification of inflammatory bowel disease. Gastroenterology. 2018;154:S79. https://doi.org/10.1053/J.GASTRO.2017.11.199.

    Article  Google Scholar 

  91. 91.

    Pascal V, Pozuelo M, Borruel N, et al. A microbial signature for Crohn’s disease. Gut. 2017; in press. https://doi.org/10.1136/gutjnl-2016-313235.

    CAS  Article  Google Scholar 

  92. 92.

    Finucane MM, Sharpton TJ, Laurent TJ, Pollard KS. A taxonomic signature of obesity in the microbiome? Getting to the guts of the matter. PLoS ONE. 2014;9:e84689. https://doi.org/10.1371/journal.pone.0084689.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Debelius JW, Vázquez-Baeza Y, McDonald D, et al. Turning participatory microbiomeresearch into usable data: lessons from the American Gut Project. J Microbiol Biol Educ. 2016;17:46–50. https://doi.org/10.1128/jmbe.v17i1.1034.

    Article  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Achtman M, Wagner M. Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol. 2008;6:431–440. https://doi.org/10.1038/nrmicro1872.

    CAS  Article  PubMed  Google Scholar 

  95. 95.

    Camacho DM, Collins KM, Powers RK, Costello JC, Collins JJ. Next-generation machine learning for biological networks. Cell. 2018;173:1581–1592. https://doi.org/10.1016/J.CELL.2018.05.015.

    CAS  Article  PubMed  Google Scholar 

  96. 96.

    Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science. 2005;307:1915–1920. https://doi.org/10.1126/science.1104816.

    CAS  Article  PubMed  Google Scholar 

  97. 97.

    He Y, Wu W, Zheng H-M, et al. Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat Med. 2018; in press. https://doi.org/10.1038/s41591-018-0164-x.

    CAS  Article  Google Scholar 

  98. 98.

    American Gut Consortium. American Gut: an open platform for citizen science microbiome research. mSystems. 2018. https://doi.org/10.1128/msystems.00031-18.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christopher Staley.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Christopher Staley and Alexander Khoruts share senior authorship.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Staley, C., Kaiser, T. & Khoruts, A. Clinician Guide to Microbiome Testing. Dig Dis Sci 63, 3167–3177 (2018). https://doi.org/10.1007/s10620-018-5299-6

Download citation

Keywords

  • Bacteria
  • Community
  • Disease
  • Dysbiosis
  • Microbiome
  • Next-generation sequencing