Advertisement

Digestive Diseases and Sciences

, Volume 63, Issue 5, pp 1210–1218 | Cite as

Fusobacterium nucleatum Potentiates Intestinal Tumorigenesis in Mice via a Toll-Like Receptor 4/p21-Activated Kinase 1 Cascade

  • Yaxin Wu
  • Jiao Wu
  • Ting Chen
  • Qing Li
  • Wei Peng
  • Huan Li
  • Xiaowei Tang
  • Xiangsheng Fu
Original Article

Abstract

Background

The underlying pathogenic mechanism of Fusobacterium nucleatum in the carcinogenesis of colorectal cancer has been poorly understood.

Methods

Using C57BL/6-ApcMin/+ mice, we investigated gut microbial structures with F. nucleatum, antibiotics, and Toll-like receptor 4 (TLR4) antagonist TAK-242 treatment. In addition, we measured intestinal tumor formation and the expression of TLR4, p21-activated kinase 1 (PAK1), phosphorylated-PAK1 (p-PAK1), phosphorylated-β-catenin S675 (p-β-catenin S675), and cyclin D1 in mice with different treatments.

Results

Fusobacterium nucleatum and antibiotics treatment altered gut microbial structures in mice. In addition, F. nucleatum invaded into the intestinal mucosa in large amounts but were less abundant in the feces of F. nucleatum-fed mice. The average number and size of intestinal tumors in F. nucleatum groups was significantly increased compared to control groups in ApcMin/+ mice (P < 0.05). The expression of TLR4, PAK1, p-PAK1, p-β-catenin S675, and cyclin D1 was significantly increased in F. nucleatum groups compared to the control groups (P < 0.05). Moreover, TAK-242 significantly decreased the average number and size of intestinal tumors compared to F. nucleatum groups (P < 0.05). The expression of p-PAK1, p-β-catenin S675, and cyclin D1 was also significantly decreased in the TAK-242-treated group compared to F. nucleatum groups (P < 0.05).

Conclusions

Fusobacterium nucleatum potentiates intestinal tumorigenesis in ApcMin/+ mice via a TLR4/p-PAK1/p-β-catenin S675 cascade. Fusobacterium nucleatum-induced intestinal tumorigenesis can be inhibited by TAK-242, implicating TLR4 as a potential target for the prevention and therapy of F. nucleatum-related colorectal cancer.

Keywords

Fusobacterium nucleatum Colorectal cancer β-Catenin signaling Toll-like receptor 4 p21-activated kinase 1 

Notes

Acknowledgments

This work was supported by Grants from Natural Science Foundation of the Sichuan Science and Technology Agency (No. 201665).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124:837–848.CrossRefPubMedGoogle Scholar
  2. 2.
    Tannock GW. The search for disease-associated compositional shifts in bowel bacterial communities of humans. Trends Microbiol. 2008;16:488–495.CrossRefPubMedGoogle Scholar
  3. 3.
    Jobin C. Colorectal cancer: looking for answers in the microbiota. Cancer Discov. 2013;3:384–387.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sears CL, Garrett WS. Microbes, microbiota, and colon cancer. Cell Host Microbe. 2014;15:317–328.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Viennois E, Merlin D, Gewirtz AT, Chassaing B. Dietary emulsifier-induced low-grade inflammation promotes colon carcinogenesis. Cancer Res. 2016;77:27–40.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wang X, Yang Y, Huycke MM. Microbiome-driven carcinogenesis in colorectal cancer: models and mechanisms. Free Radic Biol Med. 2016;105:3–15.CrossRefPubMedGoogle Scholar
  7. 7.
    Tozun N, Vardareli E. Gut microbiome and gastrointestinal cancer: les liaisons dangereuses. J Clin Gastroenterol. 2016;50:S191–S196.CrossRefPubMedGoogle Scholar
  8. 8.
    Whitmore SE, Lamont RJ. Oral bacteria and cancer. PLoS Pathog. 2014;10:e1003933.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kostic AD, Gevers D, Pedamallu CS, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012;22:292–298.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Castellarin M, Warren RL, Freeman JD, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22:299–306.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Marchesi JR, Dutilh BE, Hall N, et al. Towards the human colorectal cancer microbiome. PLoS ONE. 2011;6:e20447.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Yu YN, Yu TC, Zhao HJ, et al. Berberine may rescue Fusobacterium nucleatum-induced colorectal tumorigenesis by modulating the tumor microenvironment. Oncotarget. 2015;6:32013–32026.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Kostic AD, Chun E, Robertson L, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013;14:207–215.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Yu J, Chen Y, Fu X, et al. Invasive Fusobacterium nucleatum may play a role in the carcinogenesis of proximal colon cancer through the serrated neoplasia pathway. Int J Cancer. 2016;139:1318–1326.CrossRefPubMedGoogle Scholar
  15. 15.
    Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;14:195–206.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Yang Y, Weng W, Peng J, et al. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor-kappa B, and up-regulating expression of microRNA-21. Gastroenterology. 2017;152(851–66):e24.Google Scholar
  17. 17.
    Giles RH, van Es JH, Clevers H. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta BBA Mol Cell Res. 2003;1653:1–24.Google Scholar
  18. 18.
    Behrens J. The role of the Wnt signalling pathway in colorectal tumorigenesis. Biochem Soc Trans. 2005;33(Pt 4):672–675.CrossRefPubMedGoogle Scholar
  19. 19.
    Fukata M, Shang L, Santaolalla R, et al. Constitutive activation of epithelial TLR4 augments inflammatory responses to mucosal injury and drives colitis-associated tumorigenesis. Inflamm Bowel Dis. 2011;17:1464–1473.CrossRefPubMedGoogle Scholar
  20. 20.
    Molli PR, Li DQ, Murray BW, Rayala SK, Kumar R. PAK signaling in oncogenesis. Oncogene. 2009;28:2545–2555.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Carter JH, Douglass LE, Deddens JA, et al. Pak-1 expression increases with progression of colorectal carcinomas to metastasis. Clin Cancer Res. 2004;10:3448–3456.CrossRefPubMedGoogle Scholar
  22. 22.
    Zhu G, Wang Y, Huang B, et al. A Rac1/PAK1 cascade controls beta-catenin activation in colon cancer cells. Oncogene. 2012;31:1001–1012.CrossRefPubMedGoogle Scholar
  23. 23.
    Chen Y, Peng Y, Yu J, et al. Invasive Fusobacterium nucleatum activates beta-catenin signaling in colorectal cancer via a TLR4/P-PAK1 cascade. Oncotarget. 2017;8:31802–31814.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Naito S, von Eschenbach AC, Giavazzi R, Fidler IJ. Growth and metastasis of tumor cells isolated from a human renal cell carcinoma implanted into different organs of nude mice. Cancer Res. 1986;46:4109–4115.PubMedGoogle Scholar
  25. 25.
    Matsunaga N, Tsuchimori N, Matsumoto T, Ii M. TAK-242 (resatorvid), a small-molecule inhibitor of toll-like receptor (TLR) 4 signaling, binds selectively to TLR4 and interferes with interactions between TLR4 and its adaptor molecules. Mol Pharmacol. 2011;79:34–41.CrossRefPubMedGoogle Scholar
  26. 26.
    Farzi A, Halicka J, Mayerhofer R, Frohlich EE, Tatzl E, Holzer P. Toll-like receptor 4 contributes to the inhibitory effect of morphine on colonic motility in vitro and in vivo. Sci Rep. 2015;5:9499.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Loy A, Arnold R, Tischler P, Rattei T, Wagner M, Horn M. probeCheck—a central resource for evaluating oligonucleotide probe coverage and specificity. Environ Microbiol. 2008;10:2894–2898.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Dammann K, Khare V, Harpain F, et al. PAK1 promotes intestinal tumor initiation. Cancer Prev Res (Phila). 2015;8:1093–1101.CrossRefGoogle Scholar
  29. 29.
    Guo J, Fu X, Liao H, et al. Potential use of bacterial community succession for estimating post-mortem interval as revealed by high-throughput sequencing. Sci Rep. 2016;6:24197.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Caporaso JG, Lauber CL, Walters WA, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–1624.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Irrazabal T, Belcheva A, Girardin SE, Martin A, Philpott DJ. The multifaceted role of the intestinal microbiota in colon cancer. Mol Cell. 2014;54:309–320.CrossRefPubMedGoogle Scholar
  32. 32.
    Mima K, Nishihara R, Qian ZR, et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut. 2016;65:1973–1980.CrossRefPubMedGoogle Scholar
  33. 33.
    Sena P, Saviano M, Monni S, et al. Subcellular localization of beta-catenin and APC proteins in colorectal preneoplastic and neoplastic lesions. Cancer Lett. 2006;241:203–212.CrossRefPubMedGoogle Scholar
  34. 34.
    Zhu G, Wang Y, Huang B, et al. A Rac1/PAK1 cascade controls β-catenin activation in colon cancer cells. Oncogene. 2012;31(8):1001–1012.CrossRefPubMedGoogle Scholar
  35. 35.
    Ding T, Schloss PD. Dynamics and associations of microbial community types across the human body. Nature. 2014;509:357–360.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Abed J, Emgard JE, Zamir G, et al. Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc. Cell Host Microbe. 2016;20:215–225.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lyra A, Forssten S, Rolny P, et al. Comparison of bacterial quantities in left and right colon biopsies and faeces. World J Gastroenterol. 2012;18:4404–4411.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Conte MP, Schippa S, Zamboni I, et al. Gut-associated bacterial microbiota in paediatric patients with inflammatory bowel disease. Gut. 2006;55:1760–1767.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yaxin Wu
    • 1
    • 2
  • Jiao Wu
    • 1
    • 2
  • Ting Chen
    • 1
    • 2
  • Qing Li
    • 1
    • 2
  • Wei Peng
    • 1
    • 2
  • Huan Li
    • 1
    • 2
  • Xiaowei Tang
    • 1
  • Xiangsheng Fu
    • 1
    • 2
  1. 1.Department of GastroenterologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
  2. 2.Endoscopy CenterThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina

Personalised recommendations