Skip to main content

Advertisement

Log in

Chemoprevention by Probiotics During 1,2-Dimethylhydrazine-Induced Colon Carcinogenesis in Rats

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Probiotics are believed to have properties that lower the risk of colon cancer. However, the mechanisms by which they exert their beneficial effects are relatively unknown.

Aim

To assess the impact of probiotics in preventing induction of colon carcinogenesis in rats.

Methods

The rats were divided into six groups viz., normal control, Lactobacillus plantarum (AdF10)-treated, Lactobacillus rhamnosus GG (LGG)-treated, 1,2-dimethylhydrazine (DMH)-treated, L. plantarum (AdF10) + DMH-treated and L. rhamnosus GG (LGG) + DMH-treated. Both the probiotics were supplemented daily at a dose of 2 × 1010 cells per day. DMH at a dose of 30 mg/kg body weight was administered subcutaneously twice a week for the first 4 weeks and then once every week for a duration of 16 weeks. Glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and catalase as protein expression of genes involved in apoptosis were assessed during DMH-induced colon carcinogenesis in rats.

Results

DMH treatment decreased the activity of GSH, GPx, GST, SOD and catalase. However, AdF10 and LGG supplementation to DMH-treated rats significantly increased the activity of these enzymes. Further, DMH treatment revealed alterations in the protein expressions of various genes involved in the p53-mediated apoptotic pathway such as p53, p21, Bcl-2, Bax, caspase-9 and caspase-3, which, however, were shifted towards normal control levels upon simultaneous supplementation with probiotics.

Conclusion

The present study suggests that probiotics can provide protection against oxidative stress and apoptotic-related protein disregulation during experimentally induced colon carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bray F, Jemal A, Grey N, et al. Global cancer transitions according to the Human Development Index (2008–2030): a population-based study. Lancet Oncol. 2012;13:790–801.

    Article  PubMed  Google Scholar 

  2. Martenson JA Jr, Willett CG, Sargent DJ, et al. Phase III study of adjuvant chemotherapy and radiation therapy compared with chemotherapy alone in the surgical adjuvant treatment of colon cancer: results of Intergroup Protocol 130. J Clin Oncol. 2004;22:3277–3283.

    Article  CAS  PubMed  Google Scholar 

  3. Fuller R. Probiotics in man and animals. J Appl Bacteriol. 1989;66:365–378.

    Article  CAS  PubMed  Google Scholar 

  4. Sanders ME, Guarner F, Guerrant R, et al. An update on the use and investigation of probiotics in health and disease. Gut. 2013;62:787–796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Verna EC, Lucak S. Use of probiotics in gastrointestinal disorders: what to recommend? Ther Adv Gastroenterol. 2010;3:307–319.

    Article  Google Scholar 

  6. Chau I, Cunningham D. Adjuvant therapy in colon cancer—what, when and how? Ann Oncol. 2006;17:1347–1359.

    Article  CAS  PubMed  Google Scholar 

  7. Thirabunyanon M, Hongwittayakorn P. Potential probiotic lactic acid bacteria of human origin induce antiproliferation of colon cancer cells via synergic actions in adhesion to cancer cells and short-chain fatty acid bioproduction. Appl Biochem Biotechnol. 2013;169:511–525.

    Article  CAS  PubMed  Google Scholar 

  8. Walia S, Keshani Sood S, et al. Exhibition of DNA-bioprotective activity by microflora of traditional fermented foods of North-Western Himalayas. Food Res Int. 2014;55:176–180.

    Article  CAS  Google Scholar 

  9. Jackson PE, O’Connor PJ, Cooper DP, et al. Associations between tissue-specific DNA alkylation, DNA repair and cell proliferation in the colon and colon tumour yield in mice treated with 1,2-dimethylhydrazine. Carcinogenesis. 2003;24:527–533.

    Article  CAS  PubMed  Google Scholar 

  10. Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants and the degenerative diseases of aging. Proc Natl Acad Sci USA. 1993;90:7915–7922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Breimer LH. Molecular mechanisms of oxygen radical carcinogenesis and mutagenesis: the role of DNA base damage. Mol Carcinog. 1990;3:188–197.

    Article  CAS  PubMed  Google Scholar 

  12. del Carmen S, de LeBlanc AM, Miyoshi A. Potential application of probiotics in the prevention and treatment of inflammatory bowel diseases. Ulcers. 2011. https://doi.org/10.1155/2011/841651.

    Google Scholar 

  13. Walia S, Kamal R, Kanwar SS, et al. Cyclooxygenase as a target for chemoprevention by probiotics during 1,2-dimethylhydrazine induced colon cancer. Nutr Cancer. 2015;67:603–611.

    Article  PubMed  Google Scholar 

  14. Sourabh A, Kanwar SS, Sharma OP. Antagonistic potential of indigenous bacterial probiotics of Western Himalayas against antibiotic-resistant bacterial pathogens. Curr Sci. 2011;101:1–6.

    Google Scholar 

  15. Wills ED. Mechanisms of lipid peroxide formation in animal tissues. Biochem J. 1966;99:667–676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967;70:158–169.

    CAS  PubMed  Google Scholar 

  17. Kono Y. Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys. 1978;186:189–195.

    Article  CAS  PubMed  Google Scholar 

  18. Luck H. Quantitative determination of catalase activity of biological material. Enzymologia. 1954;17:31–40.

    CAS  PubMed  Google Scholar 

  19. Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249:7130–7139.

    CAS  PubMed  Google Scholar 

  20. Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82:70–77.

    Article  CAS  PubMed  Google Scholar 

  21. Carlburg I, Mannervik B. Glutathione reductase. Methods Enzymol. 1985;113:484–490.

    Article  Google Scholar 

  22. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254.

    Article  CAS  PubMed  Google Scholar 

  23. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685.

    Article  CAS  PubMed  Google Scholar 

  24. Newell LE, Heddle JA. The potent colon carcinogen, 1,2-dimethylhydrazine induces mutations primarily in the colon. Mutat Res. 2004;564:1–7.

    Article  CAS  PubMed  Google Scholar 

  25. Saini MK, Kaur J, Sharma P, et al. Chemopreventive response of diclofenac, a non-steroidal anti-inflammatory drug in experimental carcinogenesis. Nutr Hosp. 2009;24:717–723.

    CAS  Google Scholar 

  26. Mano T, Sinohara R, Sawai Y, et al. Changes in lipid peroxidation and free radical scavengers in the brain of hyper-and hypothyroid aged rats. J Endocrinol. 1995;147:361–365.

    Article  CAS  PubMed  Google Scholar 

  27. Huang YL, Sheu JY, Lin TH. Association between oxidative stress and changes of trace elements in patients with breast cancer. Clin Biochem. 1999;32:131–136.

    Article  CAS  PubMed  Google Scholar 

  28. Samir M, el Kholy NM. Thiobarbituric acid reactive substances in patients with laryngeal cancer. Clin Otolaryngol Allied Sci. 1999;24:232–234.

    Article  CAS  PubMed  Google Scholar 

  29. Schmelz EM, Sullards MC, Dillehay DL, et al. Colonic cell proliferation and aberrant crypt foci formation are inhibited by dairy glycosphingolipids in 1, 2-dimethylhydrazine-treated CF1 mice. J Nutr. 2000;130:522–527.

    Article  CAS  PubMed  Google Scholar 

  30. Cao G, Sofic E, Prior RL. Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radic Bio Med. 1997;22:749–760.

    Article  CAS  Google Scholar 

  31. Meister A. New aspects of glutathione biochemistry and transport-selective alteration of glutathione metabolism. Nutr Rev. 1984;42:397–410.

    Article  CAS  PubMed  Google Scholar 

  32. Kullisaar T, Songisepp E, Mikelsaar M, et al. Antioxidative probiotic fermented goats’ milk decreases oxidative stress-mediated atherogenicity in human subjects. Br J Nutr. 2003;90:449–456.

    Article  CAS  PubMed  Google Scholar 

  33. Farag IM, Abdel-Aziz KB, Nada SA, et al. Modulation of ochratoxin-induced oxidative stress, genotoxicity and spermatotoxic alterations by Lactobacillus rhamnosus GG in male albino mice. J Am Sci. 2010;6:575–587.

    Google Scholar 

  34. Kyle ME, Miccadei S, Nakae D, et al. Superoxide dismutase and catalase protect cultured hepatocytes from the cytotoxicity of acetaminophen. Biochem Biophys Res Commun. 1987;149:889–896.

    Article  CAS  PubMed  Google Scholar 

  35. Matés JM, Sánchez-Jiménez F. Antioxidant enzymes and their implications in pathophysiologic processes. Front Biosci. 1999;4:D339–D345.

    Article  PubMed  Google Scholar 

  36. Yasuda E, Serata M, Sako T. Suppressive effect on activation of macrophages by Lactobacillus casei strain Shirota genes determining the synthesis of cell wall-associated polysaccharides. Appl Environ Microbiol. 2008;74:4746–4755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mikelsaar M, Zilmer M. Lactobacillus fermentum ME-3—an antimicrobial and antioxidative probiotic. Microb Ecol Health Dis. 2009;21:1–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bruno-Bárcena JM, Andrus JM, Libby SL, et al. Expression of a heterologous manganese superoxide dismutase gene in intestinal lactobacilli provides protection against hydrogen peroxide toxicity. Appl Environ Microbiol. 2004;70:4702–4710.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Shen H, Tsuchida S, Tamai K, et al. Identification of cysteine residues involved in disulfide formation in the inactivation of glutathione transferase P-form by hydrogen peroxide. Arch Biochem Biophys. 1993;300:137–141.

    Article  CAS  PubMed  Google Scholar 

  40. Gregor R, Andrew WB. Selection of lactobacillus strains for urogenital probiotic applications. J Infect Dis. 2001;183:S77–S80.

    Article  Google Scholar 

  41. Manju V, Balasubramaniyan V, Nalini N. Rat colonic lipid peroxidation and antioxidant status: the effects of dietary luteolin on 1, 2-dimethylhydrazine challenge. Cell Mol Biol Lett. 2005;10:535–551.

    CAS  PubMed  Google Scholar 

  42. Payne D, Kubes P. Nitric oxide donors reduce the rise in reperfusion-induced intestinal mucosal permeability. Am J Physiol. 1993;265:G189–G190.

    CAS  PubMed  Google Scholar 

  43. Kumar M, Kumar A, Nagpal R, et al. Cancer-preventing attributes of probiotics: an update. Int J Food Sci Nutr. 2010;61:473–496.

    Article  CAS  PubMed  Google Scholar 

  44. Giaccia AJ, Kastan MB. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev. 1998;12:2973–2983.

    Article  CAS  PubMed  Google Scholar 

  45. Lohrum MA, Vousden KH. Regulation and activation of p53 and its family members. Cell Death Differ. 1999;6:1162–1168.

    Article  CAS  PubMed  Google Scholar 

  46. Jin S, Levine AJ. The p53 functional circuit. J Cell Sci. 2001;114:4139–4140.

    CAS  PubMed  Google Scholar 

  47. Hilska M, Collan YU, Laine VJO, et al. The significance of tumor markers for proliferation and apoptosis in predicting survival in colorectal cancer. Dis Colon Rectum. 2005;48:2197–2208.

    Article  PubMed  Google Scholar 

  48. Resnick MB, Routhier J, Konkin T, et al. Epidermal growth factor receptor, c-MET, beta-catenin, and p53 expression as prognostic indicators in stage II colon cancer: a tissue microarray study. Clin Cancer Res. 2004;10:3069–3075.

    Article  CAS  PubMed  Google Scholar 

  49. Merino D, Malkin D. p53 and hereditary cancer. Subcell Biochem. 2014;85:1–16.

    Article  PubMed  Google Scholar 

  50. Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010;2:a001008.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell. 1995;80:293–299.

    Article  CAS  PubMed  Google Scholar 

  52. Sedlak TW, Oltvai ZN, Yang E, et al. Multiple Bcl-2 family members demonstrate selective dimerizations with Bax. Proc Natl Acad Sci USA. 1995;92:7834–7838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zha H, Reed JC. Heterodimerization-independent functions of cell death regulatory proteins Bax and Bcl-2 in yeast and mammalian cells. J Biol Chem. 1997;272:31482–31488.

    Article  CAS  PubMed  Google Scholar 

  54. Xiang J, Chao DT, Korsmeyer SJ. BAX-induced cell death may not require interleukin 1 beta-converting enzyme-like proteases. Proc Natl Acad Sci USA. 1996;3:14559–14563.

    Article  Google Scholar 

  55. Skulachev VP. Cytochrome c in the apoptotic and antioxidant cascades. FEBS Lett. 1998;423:275–280.

    Article  CAS  PubMed  Google Scholar 

  56. Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science. 1998;281:1322–1326.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledges the financial support provided by DST INSPIRE Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Kanwar.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walia, S., Kamal, R., Dhawan, D.K. et al. Chemoprevention by Probiotics During 1,2-Dimethylhydrazine-Induced Colon Carcinogenesis in Rats. Dig Dis Sci 63, 900–909 (2018). https://doi.org/10.1007/s10620-018-4949-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-018-4949-z

Keywords

Navigation