Skip to main content

Advertisement

Log in

Interplay Between SIRT-3, Metabolism and Its Tumor Suppressor Role in Hepatocellular Carcinoma

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Sirtuins (SIRT), first described as nicotinamide adenine dinucleotide (NAD+)-dependent type III histone deacetylases, are produced by cells to support in the defense against chronic stress conditions such as metabolic syndromes, neurodegeneration, and cancer. SIRT-3 is one of the most studied members of the mitochondrial sirtuins family. In particular, its involvement in metabolic diseases and its dual role in cancer have been described. In the present review, based on the evidence of SIRT-3 involvement in metabolic dysfunctions, we aimed to provide an insight into the multifaceted role of SIRT-3 in many solid and hematological tumors with a particular focus on hepatocellular carcinoma (HCC). SIRT-3 regulatory effect and involvement in metabolism dysfunctions may have strong implications in HCC development and treatment. Research literature widely reports the relationship between metabolic disorders and HCC development. This evidence suggests a putative bridge role of SIRT-3 between metabolic diseases and HCC. However, further studies are necessary to demonstrate such interconnection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SIRT:

Sirtuin

SOD2:

Superoxide dismutase 2

HCC:

Hepatocellular carcinoma

HBV:

Hepatitis B virus

HCV:

Hepatitis C virus

AIH:

Autoimmune hepatitis

PBC:

Primary biliary cholangitis

NASH:

Nonalcoholic steatohepatitis

DM2:

Type 2 diabetes mellitus

NAFLD:

Nonalcoholic fatty liver disease

MnSOD:

Superoxide dismutase 2

OSCC:

Oral squamous cell carcinoma

NMNAT2:

Nicotinamide mononucleotide adenylyltransferase 2

GC:

Gastric cancer

MIAM:

2-[1-(3-Methoxycarbonylmethyl-1H-indol-2-yl)-1-methyl-ethyl]-1H-indol-3-yl}-acetic acid methyl ester

References

  1. Guarente L. The many faces of sirtuins: sirtuins and the Warburg effect. Nat Med. 2014;20:24–25.

    Article  CAS  PubMed  Google Scholar 

  2. Chen Y, Fu LL, Wen X, et al. Sirtuin-3 (SIRT3), a therapeutic target with oncogenic and tumor-suppressive function in cancer. Cell Death Dis. 2014;5:e1047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest. 2009;119:2758–2771.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Alhazzazi TY, Kamarajan P, Verdin E, Kapila YL. Sirtuin-3 (SIRT3) and the hallmarks of cancer. Genes Cancer. 2013;4:164–171.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cho EH. SIRT3 as a regulator of non-alcoholic fatty liver disease. J Lifestyle Med. 2014;4:80–85.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Teodoro JS, Duarte FV, Gomes AP, et al. Berberine reverts hepatic mitochondrial dysfunction in high-fat fed rats: a possible role for SirT3 activation. Mitochondrion. 2013;13:637–646.

    Article  CAS  PubMed  Google Scholar 

  7. Choudhury M, Jonscher KR, Friedman JE. Reduced mitochondrial function in obesity-associated fatty liver: SIRT3 takes on the fat. Aging (Albany NY). 2011;3:175–178.

    Article  CAS  Google Scholar 

  8. Stroffolini T, Trevisani F, Pinzello G, et al. Changing aetiological factors of hepatocellular carcinoma and their potential impact on the effectiveness of surveillance. Dig Liver Dis. 2011;43:875–880.

    Article  PubMed  Google Scholar 

  9. Faloppi L, Scartozzi M, Maccaroni E, et al. Evolving strategies for the treatment of hepatocellular carcinoma: from clinical-guided to molecularly-tailored therapeutic options. Cancer Treat Rev. 2011;37:169–177.

    Article  CAS  PubMed  Google Scholar 

  10. Bellissimo F, Pinzone MR, Cacopardo B, Nunnari G. Diagnostic and therapeutic management of hepatocellular carcinoma. World J Gastroenterol. 2015;21:12003–12021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Weir HJ, Lane JD, Balthasar N. SIRT3: a central regulator of mitochondrial adaptation in health and disease. Genes Cancer. 2013;4:118–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guarente L, Kenyon C. Genetic pathways that regulate ageing in model organisms. Nature. 2000;408:255–262.

    Article  CAS  PubMed  Google Scholar 

  13. Dhillon RS, Denu JM. Using comparative biology to understand how aging affects mitochondrial metabolism. Mol Cell Endocrinol. 2016. doi:10.1016/j.mce.2016.12.020.

    Google Scholar 

  14. Kim HS, Patel K, Muldoon-Jacobs K, et al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell. 2010;17:41–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shi T, Wang F, Stieren E, Tong Q. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem. 2005;280:13560–13567.

    Article  CAS  PubMed  Google Scholar 

  16. Sack MN, Finkel T. Mitochondrial metabolism, sirtuins, and aging. Cold Spring Harb Perspect Biol. 2012;4:a013102. doi:10.1101/cshperspect.a013102.

  17. Ansari A, Rahman MS, Saha SK, Saikot FK, Deep A, Kim KH. Function of the SIRT3 mitochondrial deacetylase in cellular physiology, cancer, and neurodegenerative disease. Aging Cell. 2017;16:4–16.

    Article  CAS  PubMed  Google Scholar 

  18. Carafa V, Nebbioso A, Altucci L. Sirtuins and disease: the road ahead. Front Pharmacol. 2012;31:3–4.

    Google Scholar 

  19. Nogueiras R, Habegger KM, Chaudhary N, et al. Sirtuin 1 and sirtuin 3: physiological modulators of metabolism. Physiol Rev. 2012;92:1479–1514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hebert AS, Dittenhafer-Reed KE, Yu W, et al. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol Cell. 2013;49:186–199.

    Article  CAS  PubMed  Google Scholar 

  21. Hirschey M, Shimazu T, Goetzman E, et al. SIRT3 regulates mitochondrial fatty acid oxidation via reversible enzyme deacetylation. Nature. 2010;464:121–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Buler M, Aatsinki SM, Izzi V, Hakkola J. Metformin reduces hepatic expression of SIRT3, the mitochondrial deacetylase controlling energy metabolism. PLoS ONE. 2012;7:e49863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hirschey M, Shimazu T, Jing E, et al. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol Cell. 2011;44:177–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. He J, Hu B, Shi X, et al. Activation of the aryl hydrocarbon receptor sensitizes mice to nonalcoholic steatohepatitis by deactivating mitochondrial sirtuin deacetylase Sirt3. Mol Cell Biol. 2013;33:2047–2055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Souza MR, Diniz F, Medeiros-Filho JE, Araújo MS. Metabolic syndrome and risk factors for non-alcoholic fatty liver disease. Arq Gastroenterol. 2012;49:89–96.

    Article  PubMed  Google Scholar 

  26. Ascha MS, Hanouneh IA, Lopez R, Tamimi TA, Feldstein AF, Zein NN. The incidence and risk factors of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. Hepatology. 2010;51:1972–1978.

    Article  PubMed  Google Scholar 

  27. Tilg H, Moschen AR, Roden M. NAFLD and diabetes mellitus. Nat Rev Gastroenterol Hepatol. 2017;14:32–42.

    Article  CAS  PubMed  Google Scholar 

  28. Chen HP, Shieh JJ, Chang CC, et al. Metformin decreases hepatocellular carcinoma risk in a dose-dependent manner: population-based and in vitro studies. Gut. 2013;62:606–615.

    Article  CAS  PubMed  Google Scholar 

  29. Chen TM, Lin CC, Huang PT, Wen CF. Metformin associated with lower mortality in diabetic patients with early stage hepatocellular carcinoma after radiofrequency ablation. J Gastroenterol Hepatol. 2011;26:858–865.

    Article  PubMed  Google Scholar 

  30. Singh S, Singh PP, Singh AG, Murad MH, Sanchez W. Anti-diabetic medications and the risk of hepatocellular cancer: a systematic review and meta-analysis. Am J Gastroenterol. 2013;108:881–891.

    Article  CAS  PubMed  Google Scholar 

  31. Donadon V, Balbi M, Mas MD, Casarin P, Zanette G. Metformin and reduced risk of hepatocellular carcinoma in diabetic patients with chronic liver disease. Liver Int. 2010;30:750–758.

    Article  CAS  PubMed  Google Scholar 

  32. Tao R, Coleman MC, Pennington JD, et al. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell. 2010;40:893–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Finley LW, Carracedo A, Lee J, et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization. Cancer Cell. 2011;19:416–442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schumacker PT. SIRT3 controls cancer metabolic reprogramming by regulating ROS and HIF. Cancer Cell. 2011;19:299–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Koyama T, Kume S, Koya D, et al. SIRT3 attenuates palmitate-induced ROS production and inflammation in proximal tubular cells. Free Radic Bio Med. 2011;51:1258–1267.

    Article  CAS  Google Scholar 

  36. Alhazzazi TY, Kamarajan P, Joo N, et al. Sirtuin-3 (SIRT3), a novel potential therapeutic target for oral cancer. Cancer. 2011;117:1670–1678.

    Article  CAS  PubMed  Google Scholar 

  37. Lai CC, Lin PM, Lin SF, et al. Altered expression of SIRT gene family in head and neck squamous cell carcinoma. Tumour Biol. 2013;34:1847–1854.

    Article  CAS  PubMed  Google Scholar 

  38. George J, Nihal M, Singh CK, Zhong W, Liu X, Ahmad N. Pro-proliferative function of mitochondrial sirtuin deacetylase SIRT3 in human melanoma. J Invest Dermatol. 2016;136:809–818.

    Article  CAS  PubMed  Google Scholar 

  39. Choi J, Koh E, Lee YS, et al. Mitochondrial Sirt3 supports cell proliferation by regulating glutamine-dependent oxidation in renal cell carcinoma. Biochem Biophys Res Commun. 2016;474:547–553.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang L, Ren X, Cheng Y, et al. Identification of Sirtuin 3, a mitochondrial protein deacetylase, as a new contributor to tamoxifen resistance in breast cancer cells. Biochem Pharmacol. 2013;86:726–733.

    Article  CAS  PubMed  Google Scholar 

  41. Xiang XY, Kang JS, Yang XC, et al. SIRT3 participates in glucose metabolism interruption and apoptosis induced by BH3 mimetic S1 in ovarian cancer cells. Int J Oncol. 2016;49:773–784.

    CAS  PubMed  Google Scholar 

  42. Li H, Feng Z, Wu W, Li J, Zhang J, Xia T. SIRT3 regulates cell proliferation and apoptosis related to energy metabolism in non-small cell lung cancer cells through deacetylation of NMNAT2. Int J Oncol. 2013;43:1420–1430.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Xiao K, Jiang J, Wang W, et al. Sirt3 is a tumor suppressor in lung adenocarcinoma cells. Oncol Rep. 2013;30:1323–1328.

    CAS  PubMed  Google Scholar 

  44. Allison SJ, Milner J. SIRT3 is pro-apoptotic and participates in distinct basal apoptotic pathways. Cell Cycle. 2007;6:2669–2677.

    Article  CAS  PubMed  Google Scholar 

  45. Liu C, Huang Z, Jiang H, Shi F. The sirtuin 3 expression profile is associated with pathological and clinical outcomes in colon cancer patients. Biomed Res Int. 2014;2014:871263.

    PubMed  PubMed Central  Google Scholar 

  46. Yang B, Fu X, Shao L, Ding Y, Zeng D. Aberrant expression of SIRT3 is conversely correlated with the progression and prognosis of human gastric cancer. Biochem Biophys Res Commun. 2014;443:156–160.

    Article  CAS  PubMed  Google Scholar 

  47. Wang L, Wang WY, Cao LP. SIRT3 inhibits cell proliferation in human gastric cancer through down-regulation of Notch-1. Int J Clin Exp Med. 2015;8:5263–5271.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Marfe G, Tafani M, Indelicato M, et al. Kaempferol induces apoptosis in two different cell lines via Akt inactivation, Bax and SIRT3 activation, and mitochondrial dysfunction. J Cell Biochem. 2009;106:643–650.

    Article  CAS  PubMed  Google Scholar 

  49. Yu W, Denu RA, Krautkramer KA, et al. Loss of SIRT3 provides growth advantage for B cell malignancies. J Biol Chem. 2016;291:3268–3279.

    Article  CAS  PubMed  Google Scholar 

  50. Signorelli P, Ghidoni R. Resveratrol as an anticancer nutrient: molecular basis, open questions and promises. J Nutr Biochem. 2005;16:449–466.

    Article  CAS  PubMed  Google Scholar 

  51. Faccioruso A, Villani R, Bellanti F, Mitarotonda D, Vendemiale G, Serviddio G. Mitochondrial signaling and hepatocellular carcinoma: molecular mechanisms and therapeutic implications. Curr Pharm Des. 2016;22:2689–2696.

    Article  Google Scholar 

  52. Yoon CY, Park MJ, Lee JS, et al. The histone deacetylase inhibitor trichostatin A synergistically resensitizes a cisplatin resistant human bladder cancer cell line. J Urol. 2001;185:1102–1111.

    Article  Google Scholar 

  53. Royce SG, Dang W, Yuan G, et al. Effects of the histone deacetylase inhibitor, trichostatin A, in a chronic allergic airways disease model in mice. Arch Immunol Ther Exp. 2012;60:295–306.

    Article  CAS  Google Scholar 

  54. Wang JX, Yi Y, Li YW, et al. Down-regulation of sirtuin 3 is associated with poor prognosis in hepatocellular carcinoma after resection. BMC Cancer. 2014;14:297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Casaril M, Corso F, Bassi A, Nicoli N, Bellisola G, Corrocher R. Decreased activity of scavenger enzymes in human hepatocellular carcinoma, but not in liver metastases. Int J Clin Lab Res. 1994;24:94–97.

    Article  CAS  PubMed  Google Scholar 

  56. Liaw KY, Lee PH, Wu FC, Tsai JS, Lin-Shiau SY. Zinc, copper, and superoxide dismutase in hepatocellular carcinoma. Am J Gastroenterol. 1997;92:2260–2263.

    CAS  PubMed  Google Scholar 

  57. Fabregat I, Roncero C, Fernández M. Survival and apoptosis: a dysregulated balance in liver cancer. Liver Int. 2007;27:155–162.

    Article  CAS  PubMed  Google Scholar 

  58. Song CL, Tang H, Ran LK, et al. Sirtuin 3 inhibits hepatocellular carcinoma growth through the glycogen synthase kinase-3β/BCL2-associated X protein-dependent apoptotic pathway. Oncogene. 2016;35:631–641.

    Article  CAS  PubMed  Google Scholar 

  59. Zhang CZ, Liu L, Cai M, et al. Low SIRT3 expression correlates with poor differentiation and unfavorable prognosis in primary hepatocellular carcinoma. PLoS ONE. 2012;7:e51703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ren JH, Chen X, Zhou L, et al. Protective role of Sirtuin3 (SIRT3) in oxidative stress mediated by hepatitis B virus X protein expression. PLoS ONE. 2016;11:e0150961.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhang YY, Zhou LM. Sirt3 inhibits hepatocellular carcinoma cell growth through reducing Mdm2-mediated p53 degradation. Biochem Biophys Res Commun. 2012;423:26–31.

    Article  CAS  PubMed  Google Scholar 

  62. Tao NN, Zhou HZ, Tang H, et al. Sirtuin 3 enhanced drug sensitivity of human hepatoma cells through glutathione S-transferase pi 1/JNK signaling pathway. Oncotarget. 2016. doi:10.18632/oncotarget.10319.

    Google Scholar 

  63. Abdul NA, Nagiah S, Chuturgoon AA. Fusaric acid induces mitochondrial stress in human hepatocellular carcinoma (HepG2) cells. Toxicon. 2016;119:336–344.

    Article  Google Scholar 

  64. Li Y, Wang W, Xu X, Sun S, Xu X, Qu XJ. {2-[1-(3-Methoxycarbonylmethyl-1H-indol-2-yl)-1-methyl-ethyl]-1H-indol-3-yl}-acetic acid methyl ester (MIAM) inhibited human hepatocellular carcinoma growth through upregulation of Sirtuin-3 (SIRT3). Biomed Pharmacother. 2015;69:125–132.

    Article  CAS  PubMed  Google Scholar 

  65. Li Y, Wang W, Xu X, Sun S, Xu X, Qu XJ. {2-[1-(3-Methoxycarbonylmethyl-1H-indol-2-yl)-1-methyl-ethyl]-1H-indol-3-yl}-acetic acid methyl ester inhibited hepatocellular carcinoma growth in bel-7402 cells and its resistant variants by activation of NOX4 and SIRT3. Biomed Res Int. 2015;2015:491205.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

The authors thank Grainne Tierney for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serena De Matteis.

Ethics declarations

Conflict of interest

The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Matteis, S., Granato, A.M., Napolitano, R. et al. Interplay Between SIRT-3, Metabolism and Its Tumor Suppressor Role in Hepatocellular Carcinoma. Dig Dis Sci 62, 1872–1880 (2017). https://doi.org/10.1007/s10620-017-4615-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-017-4615-x

Keywords

Navigation