Skip to main content

Advertisement

Log in

Intestinal Alkaline Phosphatase Attenuates Alcohol-Induced Hepatosteatosis in Mice

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background and Aims

Bacterially derived factors from the gut play a major role in the activation of inflammatory pathways in the liver and in the pathogenesis of alcoholic liver disease. The intestinal brush-border enzyme intestinal alkaline phosphatase (IAP) detoxifies a variety of bacterial pro-inflammatory factors and also functions to preserve gut barrier function. The aim of this study was to investigate whether oral IAP supplementation could protect against alcohol-induced liver disease.

Methods

Mice underwent acute binge or chronic ethanol exposure to induce alcoholic liver injury and steatosis ± IAP supplementation. Liver tissue was assessed for biochemical, inflammatory, and histopathological changes. An ex vivo co-culture system was used to examine the effects of alcohol and IAP treatment in regard to the activation of hepatic stellate cells and their role in the development of alcoholic liver disease.

Results

Pretreatment with IAP resulted in significantly lower serum alanine aminotransferase compared to the ethanol alone group in the acute binge model. IAP treatment attenuated the development of alcohol-induced fatty liver, lowered hepatic pro-inflammatory cytokine and serum LPS levels, and prevented alcohol-induced gut barrier dysfunction. Finally, IAP ameliorated the activation of hepatic stellate cells and prevented their lipogenic effect on hepatocytes.

Conclusions

IAP treatment protected mice from alcohol-induced hepatotoxicity and steatosis. Oral IAP supplementation could represent a novel therapy to prevent alcoholic-related liver disease in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Miniño AM, Murphy SL, Xu J, et al. Deaths: final data for 2008. Natl Vital Stat Rep. 2011;7:1–126.

    Google Scholar 

  2. Varma V, Webb K, Mirza DF. Liver transplantation for alcoholic liver disease. World J Gastroenterol. 2010;21:4377–4393.

    Article  Google Scholar 

  3. O’Shea RS, Dasarathy S, McCullough AJ. Alcoholic liver disease. Hepatology. 2010;51:307–328.

    Article  PubMed  Google Scholar 

  4. Celli R, Zhang X. Pathology of alcoholic liver disease. J Clin Transl Hepatol. 2014;15:103–109.

    Google Scholar 

  5. Thurman RG. Alcoholic liver injury involves activation of Kupffer cells by endotoxin. Am J Physiol Gastrointest Liver Physiol. 1998;275:G605–G611.

    CAS  Google Scholar 

  6. Lin HZ, Yang SQ, Zeldin G, et al. Chronic ethanol consumption induces the production of tumor necrosis factor-alpha and related cytokines in liver and adipose tissue. Alcohol Clin Exp Res. 1998;22:231S–237S.

    Article  CAS  PubMed  Google Scholar 

  7. Inokuchi S, Tsukamoto H, Park E, et al. Toll-like receptor 4 mediates alcohol-induced steatohepatitis through bone marrow-derived and endogenous liver cells in mice. Alcohol Clin Exp Res. 2011;35:1509–1518.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bird GL, Sheron N, Goka AK, et al. Increased plasma tumor necrosis factor in sever alcoholic hepatitis. Ann Intern Med. 1990;112:917–920.

    Article  CAS  PubMed  Google Scholar 

  9. Felver ME, Mezey E, McGuire M, et al. Plasma tumor necrosis factor alpha predicts decreased long term survival in severe alcoholic hepatitis. Alcohol Clin Exp Res. 1990;14:255–259.

    Article  CAS  PubMed  Google Scholar 

  10. Seki E, Brenner DA. Toll-like receptors and adaptor molecules in liver disease: update. Hepatology. 2008;48:322–335.

    Article  CAS  PubMed  Google Scholar 

  11. Petrasek J, Mandrekar P, Szabo G. Toll-like receptors in the pathogenesis of alcoholic liver disease. Gastroenterol Res Pract. 2010;2010:710381.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nanji AA, Khettry U, Sadrzadeh SM, et al. Severity of liver injury in experimental alcoholic liver disease. Correlation with plasma endotoxin, prostaglandin E2, leukotriene B4, and thromboxane B2. Am J Pathol. 1993;142:367–373.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fukui H. Relation of endotoxin, endotoxin binding proteins and macrophages to severe alcoholic liver injury and multiple organ failure. Alcohol Clin Exp Res. 2005;29:172S–179S.

    Article  CAS  PubMed  Google Scholar 

  14. Horie Y, Kato S, Ohki E, et al. Role of endothelin in endotoxin-induced hepatic microvascular dysfunction in rats fed chronically with ethanol. J Gastroenterol Hepatol. 2001;16:916–922.

    Article  CAS  PubMed  Google Scholar 

  15. Horie Y, Kato S, Ohki E, et al. Hepatic microvascular dysfunction in endotoxemic rats after acute ethanol administration. Alcohol Clin Exp Res. 2000;24:691–698.

    Article  CAS  PubMed  Google Scholar 

  16. Deaciuc IV, Nikolova-Karakashian M, Fortunato F, et al. Apoptosis and dysregulated ceramide metabolism in a murine model of alcohol enhanced lipopolysaccharide hepatotoxicity. Alcohol Clin Exp Res. 2000;24:1557–1565.

    Article  CAS  PubMed  Google Scholar 

  17. Sandahl TD, Grønbaek H, Møller HJ, et al. Hepatic macrophage activation and the LPS pathway in patients with alcoholic hepatitis: a prospective cohort study. Am J Gastroenterol. 2014;109:1749–1756.

    Article  CAS  PubMed  Google Scholar 

  18. Mathurin P, Deng QG, Keshavarzian A, et al. Exacerbation of alcoholic liver injury by enteral endotoxin in rats. Hepatology. 2000;32:1008–1017.

    Article  CAS  PubMed  Google Scholar 

  19. Malo MS, Alam SN, Mostafa G, et al. Intestinal alkaline phosphatase preserves the normal homeostasis of gut microbiota. Gut. 2010;59:1476–1484.

    Article  CAS  PubMed  Google Scholar 

  20. Chen KT, Malo MS, Beasley-Topliffe LK, et al. A role for intestinal alkaline phosphatase in the maintenance of local gut immunity. Dig Dis Sci. 2011;56:1020–1027.

    Article  CAS  PubMed  Google Scholar 

  21. Bates JM, Akerlund J, Mittge E, et al. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe. 2007;2:371–382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen KT, Malo MS, Moss AK, et al. Identification of specific targets for the gut mucosal defense factor intestinal alkaline phosphatase. Am J Physiol Gastrointest Liver Physiol. 2010;299:G467–G475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rentea RM, Liedel JL, Welak SR, et al. Intestinal alkaline phosphatase administration in newborns is protective of gut barrier function in a neonatal necrotizing enterocolitis rat model. J Pediatr Surg. 2012;47:1135–1142.

    Article  PubMed  Google Scholar 

  24. Nakano T, Inoue I, Koyama I, et al. Disruption of the murine intestinal alkaline phosphatase gene Akp3 impairs lipid transcytosis and induces visceral fat accumulation and hepatic steatosis. Am J Physiol Gastrointest Liver Physiol. 2007;292:G1439–G1449.

    Article  CAS  PubMed  Google Scholar 

  25. Kaliannan K, Hamarneh SR, Economopoulos KP, et al. Intestinal alkaline phosphatase prevents metabolic syndrome in mice. Proc Natl Acad Sci USA. 2013;110:7003–7008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hufnagel H, Bode C, Bode JC, et al. Damage of rat small intestine induced by ethanol. Effect of ethanol on fecal excretion of intestinal alkaline phosphatase. Res Exp Med. 1980;178:65–70.

    Article  CAS  Google Scholar 

  27. Eloy R, Battinger F, Bignon JY, et al. Intestinal brush border enzymes and chronic alcohol ingestion. Res Exp Med. 1979;175:257–269.

    Article  CAS  Google Scholar 

  28. Iakovleva LM. Structural and functional characteristic of rat jejunum after long-term exposure to alcohol. Morfologiia. 2012;141:45–48.

    CAS  PubMed  Google Scholar 

  29. Carson EJ, Pruett SB. Development and characterization of a binge drinking model in mice for evaluation of the immunological effects of ethanol. Alcohol Clin Exp Res. 1996;20:132–138.

    Article  CAS  PubMed  Google Scholar 

  30. Zhou Z, Sun X, Lambert JC, et al. Metallothionein-independent zinc protection from alcoholic liver injury. Am J Pathol. 2002;160:2267–2274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Folch J, Lees M. SLOANE STANLEY GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226:497–509.

    CAS  PubMed  Google Scholar 

  32. Mohar I, Brempelis KJ, Murray SA, et al. Isolation of non-parenchymal cells from the mouse liver. Methods Mol Biol. 2015;1325:3–17.

    Article  CAS  PubMed  Google Scholar 

  33. Hamarneh S, Morrison SA, Tantillo TJ, et al. A novel approach to maintaining gut mucosal integrity using an oral enzyme supplement. Ann Surg. 2014;260:706–715.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Reeves HL, Burt AD, Wood S, et al. Hepatic stellate cell activation occurs in the absence of hepatitis in alcoholic liver disease and correlates with the severity of steatosis. J Hepatol. 1996;25:677–683.

    Article  CAS  PubMed  Google Scholar 

  35. Jeong WI, Osei-Hyiaman D, Park O, et al. Paracrine activation of hepatic CB1 receptors by stellate cell-derived endocannabinoids mediates alcoholic fatty liver. Cell Metab. 2008;7:227–235.

    Article  CAS  PubMed  Google Scholar 

  36. Fukui H, Brauner B, Bode JC, et al. Plasma endotoxin concentrations in patients with alcoholic and nonalcoholic liver disease: reevaluation with an improved chromogenic assay. J Hepatol. 1991;12:162–169.

    Article  CAS  PubMed  Google Scholar 

  37. Bode C, Fukui H, Bode JC. “Hidden” endotoxin in plasma of patients with alcoholic liver disease. Eur J Gastroenterol Hepatol. 1993;5:257–262.

    Article  Google Scholar 

  38. Rao R. Endotoxemia and gut barrier dysfunction in alcoholic liver disease. Hepatology. 2009;50:638–644.

    Article  CAS  PubMed  Google Scholar 

  39. Tamai H, Kato S, Horie Y, et al. Effect of acute ethanol administration on the intestinal absorption of endotoxin in rats. Alcohol Clin Exp Res. 2000;24:390–394.

    Article  CAS  PubMed  Google Scholar 

  40. Yan AW, Fouts DE, Brandl J, et al. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology. 2011;53:96–105.

    Article  CAS  PubMed  Google Scholar 

  41. Adachi Y, Moore LE, Bradford BU, et al. Antibiotics prevent liver injury in rats following long-term exposure to ethanol. Gastroenterology. 1995;108:218–224.

    Article  CAS  PubMed  Google Scholar 

  42. Forsyth CB, Farhadi A, Jakate SM, et al. Lactobacillus GG treatment ameliorates alcohol-induced intestinal oxidative stress, gut leakiness, and liver injury in a rat model of alcoholic steatohepatitis. Alcohol. 2009;43:163–172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Eliakim R, Mahmood A, Alpers DH. Rat intestinal alkaline phosphatase secretion into lumen and serum is coordinately regulated. Biochim Biophys Acta. 1991;1091:1–8.

    Article  CAS  PubMed  Google Scholar 

  44. Schaller K, Höller H. Thiamine absorption in the rat. II. Intestinal alkaline phosphatase activity and thiamine absorption from rat small intestine in vitro and in-vivo. Int J Vitam Nutr Res. 1975;45:30–38.

    CAS  PubMed  Google Scholar 

  45. Tsukamoto H, Lu SC. Current concepts in the pathogenesis of alcoholic liver injury. FASEB J. 2001;15:1335–1349.

    Article  CAS  PubMed  Google Scholar 

  46. Goldberg RF, Austen WG Jr, Zhang X, et al. Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition. Proc Natl Acad Sci USA. 2008;4:3551–3556.

    Article  Google Scholar 

  47. Watson AJ, Hughes KR. TNF-α-induced intestinal epithelial cell shedding: implications for intestinal barrier function. Ann N Y Acad Sci. 2012;1258:1–8.

    Article  CAS  PubMed  Google Scholar 

  48. Gustot T, Lemmers A, Moreno C, et al. Differential liver sensitization to toll-like receptor pathways in mice with alcoholic fatty liver. Hepatology. 2006;43:989–1000.

    Article  CAS  PubMed  Google Scholar 

  49. Wang Z, Wu X, Zhang Y, et al. Discrepant roles of CpG ODN on acute alcohol-induced liver injury in mice. Int Immunopharmacol. 2012;12:526–533.

    Article  CAS  PubMed  Google Scholar 

  50. Oak S, Mandrekar P, Catalano D, et al. TLR2- and TLR4-mediated signals determine attenuation or augmentation of inflammation by acute alcohol in monocytes. J Immunol. 2006;176:7628–7635.

    Article  CAS  PubMed  Google Scholar 

  51. Lallès JP. Intestinal alkaline phosphatase: novel functions and protective effects. Nutr Rev. 2013;72:82–94.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Richard A. Hodin was supported by National Institute of Health grant NIH/NIDDK T32 (No. DK007754), The Ellison Foundation grant and Nutritional Obesity Research Center of Harvard (NORCH) NIH (No. P30-DK040561). We also thank the animal facility and the pathology lab at MGH for maintainance of animals and preparation of tissue sections.

Author information

Authors and Affiliations

Authors

Contributions

RAH, MYC, MSM, SRH, and BK contributed to study concept and theory; RAH, MYC, SRH, and BK contributed to research design; SRH, BK, KK, SAM, TJT, QT, MMRM, JMR, AK, WL, DH, AT, SSG, KPE, AKB, MSM, MYC, and RAH contributed to data acquisition; SRH, BK, KK, SAM, TJT, QT, MMRM, JMR, AK, WL, DH, AT, SSG, KPE, AKB, MSM, MYC, and RAH contributed to data analyses and interpretation; SRH, BK, SAM, KPE, MYC, and RAH contributed to statistical analyses; SRH, BK, CYM, and RAH contributed to drafting of the manuscript; all authors contributed to critical review of the manuscript for important intellectual content; RAH obtained funding; all authors contributed to approval of the manuscript; RAH and MYC supervised the study.

Corresponding authors

Correspondence to Michael Y. Choi or Richard A. Hodin.

Ethics declarations

Conflict of interest

None.

Additional information

Sulaiman R. Hamarneh and Byeong-Moo Kim have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamarneh, S.R., Kim, BM., Kaliannan, K. et al. Intestinal Alkaline Phosphatase Attenuates Alcohol-Induced Hepatosteatosis in Mice. Dig Dis Sci 62, 2021–2034 (2017). https://doi.org/10.1007/s10620-017-4576-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-017-4576-0

Keywords

Navigation