Skip to main content

Advertisement

Log in

Role of MiRNAs in Inflammatory Bowel Disease

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Inflammatory bowel diseases (IBD), mainly including Crohn’s disease and ulcerative colitis, are characterized by chronic inflammation of the gastrointestinal tract. Despite improvements in detection, drug treatment and surgery, the pathogenesis of IBD has not been clarified. A number of miRNAs have been found to be involved in the initiation, development and progression of IBD, and they may have the potential to be used as biomarkers and therapeutic targets. Here, we have summarized the recent advances about the roles of miRNAs in IBD and analyzed the contribution of miRNAs to general diagnosis, differential diagnosis and activity judgment of IBD. Furthermore, we have also elaborated the promising role of miRNAs in IBD-related cancer prevention and prognosis prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Molodecky NA, Soon IS, Rabi DM, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology. 2012;142:46–54.

    Article  PubMed  Google Scholar 

  2. Ng WK, Wong SH, Ng SC. Changing epidemiological trends of inflammatory bowel disease in Asia. Intest Res. 2016;14:111–119.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gazouli M, Papaconstantinou I, Stamatis K, et al. Association study of genetic variants in miRNAs in patients with inflammatory bowel disease: preliminary results. Dig Dis Sci. 2013;58:2324–2328.

    Article  CAS  PubMed  Google Scholar 

  4. Kalla R, Ventham NT, Kennedy NT. MicroRNAs: new players in IBD. Gut. 2015;64:504–517.

    Article  CAS  PubMed  Google Scholar 

  5. Bartel DP. MicroRNA target recognition and regulatory functions. Cell. 2009;136:215–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Da Sacco L, Masotti A. Recent insights and novel bioinformatics tools to understand the role of MicroRNAs binding to 5′ untranslated region. Int J Mol Sci. 2013;14:480–495.

    Article  CAS  Google Scholar 

  7. Fang Z, Tang J, Bai Y, et al. Plasma levels of microRNA-24, microRNA-320a, and microRNA-423-5p are potential biomarkers for colorectal carcinoma. J Exp Clin Cancer Res. 2015;34:86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Huang SP, Lévesque E, Guillemette C, et al. Genetic variants in microRNAs and microRNA target sites predict biochemical recurrence after radical prostatectomy in localized prostate cancer. Int J Cancer. 2014;11:2661–2667.

    Article  CAS  Google Scholar 

  9. Shen Y, Pan Y, Xu L, et al. Identifying microRNA-mRNA regulatory network in gemcitabine-resistant cells derived from human pancreatic cancer cells. Tumour Biol. 2015;36:4525–4534.

    Article  CAS  PubMed  Google Scholar 

  10. Zhao HM, Wei W, Sun YH, Gao JH, Wang Q, Zheng JH. MicroRNA-9 promotes tumorigenesis and mediates sensitivity to cisplatin in primary epithelial ovarian cancer cells. Tumor Biol. 2015;36:6867–6873.

    Article  CAS  Google Scholar 

  11. Honardoost MA, Naghavian R, Ahmadinejad F, Hosseini A, Ghaedi K. Integrative computational mRNA-miRNA interaction analyses of the autoimmune-deregulated miRNAs and well-known Th17 differentiation regulators: an attempt to discover new potential miRNAs involved in Th17 differentiation. Gene. 2015;572:153–162.

    Article  CAS  PubMed  Google Scholar 

  12. Zeng L, Cui J, Wu H, Lu Q. The emerging role of circulating microRNAs as biomarkers in autoimmune diseases. Autoimmunity. 2014;47:419–429.

    Article  CAS  PubMed  Google Scholar 

  13. Lee S, Lim S, Ham O, et al. ROS-mediated bidirectional regulation of miRNA results in distinct pathologic heart conditions. Biochem Biophys Res Commun. 2015;465:349–355.

    Article  CAS  PubMed  Google Scholar 

  14. Zhu J, Zhang Y, Zhang W, et al. MicroRNA-142-5p contributes to Hashimoto’s thyroiditis by targeting CLDN1. J Transl Med. 2016;1:166.

    Article  CAS  Google Scholar 

  15. Wu F, Zikusoka M, Trindade A, et al. MicroRNAs are differentially expressed in ulcerative colitis and alter expression of macrophage inflammatory peptide-2 alpha. Gastroenterology. 2008;135:1624–1635.

    Article  CAS  PubMed  Google Scholar 

  16. Haines RJ, Beard RS, Eitner RA, Chen L, Wu MH. TNFα/IFNγ mediated intestinal epithelial barrier dysfunction is attenuated by microRNA-93 downregulation of PTK6 in mouse colonic epithelial cells. PLoS ONE. 2016;4:e0154351.

    Article  CAS  Google Scholar 

  17. Blander JM. Death in the intestinal epithelium—basic biology and implications for inflammatory bowel disease. FEBS J. 2016;283:2720–2730.

    Article  CAS  PubMed  Google Scholar 

  18. Okamoto R, Watanabe M. Role of epithelial cells in the pathogenesis and treatment of inflammatory bowel disease. J Gastroenterol. 2016;1:11–21.

    Article  CAS  Google Scholar 

  19. Fischer A, Gluth M, Weege F, et al. Glucocorticoids regulate barrier function and claudin expression in intestinal epithelial cells via MKP-1. Am J Physiol Gastrointest Liver Physiol. 2014;306:G218–G228.

    Article  CAS  PubMed  Google Scholar 

  20. Simone NL, Soule BP, Ly D, et al. Ionizing radiation-induced oxidative stress alters miRNA expression. PLoS ONE. 2009;4:e6377.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Sohn JJ, Schetter AJ, Yfantis HG, et al. Macrophages, nitric oxide and microRNAs are associated with DNA damage response pathway and senescence in inflammatory bowel disease. PLoS ONE. 2012;9:e44156.

    Article  CAS  Google Scholar 

  22. Li SQ, Feng L, Jiang WD, et al. Deficiency of dietary niacin impaired gill immunity and antioxidant capacity, and changes its tight junction proteins via regulating NF-kappaB, TOR, Nrf2 and MLCK signaling pathways in young grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2016;55:212–222.

    Article  CAS  PubMed  Google Scholar 

  23. Ouyang J, Zhang ZH, Zhou YX, et al. Up-regulation of tight-junction proteins by p38 mitogen-activated protein kinase/p53 inhibition leads to a reduction of injury to the intestinal mucosal barrier in severe acute pancreatitis. Pancreas. 2016;45:1136–1144.

    Article  CAS  PubMed  Google Scholar 

  24. Xu F, Ye YT, Cai CF, et al. Observation of the middle intestinal tight junction structure, cloning and studying tissue distribution of the four Claudin genes of the grass carp. Fish Physiol Biochem. 2014;6:1783–1792.

    Article  CAS  Google Scholar 

  25. Ye D, Guo S, Al-Sadi R, Ma TY. MicroRNA regulation of intestinal epithelial tight junction permeability. Gastroenterology. 2011;4:1323–1333.

    Article  CAS  Google Scholar 

  26. Zhi X, Tao J, Li Z, et al. MiR-874 promotes intestinal barrier dysfunction through targeting AQP3 following intestinal ischemic injury. FEBS Lett. 2014;588:757–763.

    Article  CAS  PubMed  Google Scholar 

  27. Wang H, Chao K, Ng SC, et al. Pro-inflammatory miR-223 mediates the cross-talk between the IL23 pathway and the intestinal barrier in inflammatory bowel disease. Genome Biol. 2016;17:58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Yang Y, Ma Y, Shi C, Chen H, et al. Overexpression of miR-21 in patients with ulcerative colitis impairs intestinal epithelial barrier function through targeting the Rho GTPase RhoB. Biochem Biophys Res Commun. 2013;434:746–752.

    Article  CAS  PubMed  Google Scholar 

  29. Shi C, Liang Y, Yang J, et al. MicroRNA-21 knockout improve the survival rate in DSS induced fatal colitis through protecting against inflammation and tissue injury. PLoS ONE. 2013;8:e66814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nijhuis A, Biancheri P, Lewis A, et al. In Crohn’s disease fibrosis-reduced expression of the miR-29 family enhances collagen expression in intestinal fibroblasts. Clin Sci. 2014;127:341–350.

    Article  CAS  PubMed  Google Scholar 

  31. Chen Y, Ge W, Xu L, et al. miR-200b is involved in intestinal fibrosis of Crohn’s disease. Int J Mol Med. 2012;29:601–606.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zidar N, Boštjančič E, Jerala M, et al. Down-regulation of microRNAs of the miR-200 family and up-regulation of Snail and Slug in inflammatory bowel diseases—hallmark of epithelial-mesenchymal transition. J Cell Mol Med. 2016;20:1813–1820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Paraskevi A, Theodoropoulos G, Papaconstantinou I, et al. Circulating MicroRNA in inflammatory bowel disease. J Crohns Colitis. 2012;6:900–904.

    Article  PubMed  Google Scholar 

  34. Min M, Peng L, Yang Y, Guo M, Wang W, Sun G. MicroRNA-155 Is Involved in the Pathogenesis of Ulcerative Colitis by Targeting FOXO3a. Inflamm Bowel Dis. 2014;20:652–659.

    Article  PubMed  Google Scholar 

  35. Pathak S, Grillo AR, Scarpa M, et al. MiR-155 modulates the inflammatory phenotype of intestinal myofibroblasts by targeting SOCS1 in ulcerative colitis. Exp Mol Med. 2015;47:e164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu F, Zikusoka M, Trindade A, et al. MicroRNAs are differentially expressed in ulcerative colitis and alter expression of macrophage inflammatory peptide-2 alpha. Gastroenterology. 2008;135:1624.e24–1635.e24.

    Google Scholar 

  37. Owaga E, Hsieh RH, Mugendi B, Masuku S, Shih CK, Chang JS. Th17 cells as potential probiotic therapeutic targets in inflammatory bowel diseases. Int J Mol Sci. 2015;16:20841–20858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Murphy EP, Crean D. Molecular interactions between NR4A orphan nuclear receptors and NF-kappaB are required for appropriate inflammatory responses and immune cell homeostasis. Biomolecules. 2015;5:1302–1318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pedros C, Duguet F, Saoudi A, Chabod M. Disrupted regulatory T cell homeostasis in inflammatory bowel diseases. World J Gastroenterol. 2016;22:974–995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chuang AY, Chuang JC, Zhai Z, Wu F, Kwon JH. NOD2 expression is regulated by microRNAs in colonic epithelial HCT116 cells. Inflamm Bowel Dis. 2014;20:126–135.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wu W, He C, Liu C, et al. miR-10a inhibits dendritic cell activation and Th1/Th17 cell immune responses in IBD. Gut. 2015;64:1755–1764.

    Article  CAS  PubMed  Google Scholar 

  42. Xue X, Feng T, Yao S, et al. Microbiota downregulates dendritic cell expression of miR-10a, which targets IL-12/IL-23p40. J Immunol. 2011;187:5879–5886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ghorpade DS, Sinha AY, Holla S, Singh V, Balaji KN. NOD2-nitric oxide-responsive microRNA-146a activates sonic hedgehog signaling to orchestrate inflammatory responses in murine model of inflammatory bowel disease. J Biol Chem. 2013;288:33037–33048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pierdomenico M, Cesi V, Cucchiara S, et al. NOD2 is regulated by mir-320 in physiological conditions but this control is altered in inflamed tissues of patients with inflammatory bowel disease. Inflamm Bowel Dis. 2016;22:315–326.

    Article  PubMed  Google Scholar 

  45. Ayyadurai S, Charania MA, Xiao B, Viennois E, Zhang Y, Merlin D. Colonic miRNA expression/secretion, regulated by intestinal epithelial PepT1, plays an important role in cell-to-cell communication during colitis. PLoS ONE. 2014;2:e87614.

    Article  CAS  Google Scholar 

  46. Xue X, Cao AT, Cao X, et al. Downregulation of microRNA-107 in intestinal CD11c(+) myeloid cells in response to microbiota and proinflammatory cytokines increases IL-23p19 expression. Eur J Immunol. 2014;44:673–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Maharshak N, Shenhar-Tsarfaty S, Aroyo N, et al. MicroRNA-132 modulates cholinergic signaling and inflammation in human inflammatory bowel disease. Inflamm Bowel Dis. 2013;19:1346–1353.

    Article  PubMed  Google Scholar 

  48. Xu XM, Zhang HJ. MiRNAs as new molecular insights into inflammatory bowel disease: crucial regulators in autoimmunity and inflammation. World J Gastroenterol. 2016;22:2206–2218.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wu F, Dong F, Arendovich N, Zhang J, Huang Y, Kwon JH. Divergent influence of microRNA-21 deletion on murine colitis phenotypes. Inflamm Bowel Dis. 2014;20:1972–1985.

    Article  PubMed  Google Scholar 

  50. Singh UP, Murphy AE, Enos RT, et al. miR-155 deficiency protects mice from experimental colitis by reducing T helper type 1type 17 responses. Immunology. 2014;3:478–489.

    Article  CAS  Google Scholar 

  51. Kohlhaas S, Garden OA, Scudamore C, Turner M, Okkenhaug K, Vigorito E. Cutting edge: the Foxp3 target miR-155 contributes to the development of regulatory T cells. J Immunol. 2009;182:2578–2582.

    Article  CAS  PubMed  Google Scholar 

  52. Chinen I, Nakahama T, Kimura A, et al. The aryl hydrocarbon receptor/microRNA-212/132 axis in T cells regulates IL-10 production to maintain intestinal homeostasis. Int Immunol. 2015;27:405–415.

    Article  CAS  PubMed  Google Scholar 

  53. Wang H, Flach H, Onizawa M, Wei L, McManus MT, Weiss A. Negative regulation of Hif1a expression and TH17 differentiation by the hypoxia-regulated microRNA miR-210. Nat Immunol. 2014;15:393–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mizoguchi A, Mizoguchi E. Inflammatory bowel disease, past, present and future: lessons from animal models. J Gastroenterol. 2008;43:1–17.

    Article  PubMed  Google Scholar 

  55. Kaser A, Niederreiter L, Blumberg RS. Genetically determined epithelial dysfunction and its consequences for microflora-host interactions. Cell Mol Life Sci. 2011;68:3643–3649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang P, Zhang H. Autophagy modulates miRNA-mediated gene silencing and selectively degrades AIN-1/GW182 in C. elegans. EMBO Rep. 2013;14:568–576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gibbings D, Mostowy S, Jay F. Selective autophagy degrades DICER and AGO2 and regulates miRNA activity. Nat Cell Biol. 2012;14:1314–1321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Petkova DS, Viret C, Faure M. IRGM in autophagy and viral infections. Front Immunol. 2012;3:426.

    PubMed  Google Scholar 

  59. Brest P, Lapaquette P, Souidi M, et al. A synonymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn’s disease. Nat Genet. 2011;43:242–245.

    Article  CAS  PubMed  Google Scholar 

  60. Plantinga TS, Crisan TO, Oosting M. Crohn’s disease-associated ATG16L1 polymorphism modulates pro-inflammatory cytokine responses selectively upon activation of NOD2. Gut. 2011;9:1229–1235.

    Article  CAS  Google Scholar 

  61. Ohsumi Y. Historical landmarks of autophagy research. Cell Res. 2014;24:9–23.

    Article  CAS  PubMed  Google Scholar 

  62. Salem M, Ammitzboell M, Nys K, et al. ATG16L1: a multifunctional susceptibility factor in Crohn disease. Autophagy. 2015;11:585–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhai Z, Wu F, Dong F, et al. Human autophagy gene ATG16L1 is post-transcriptionally regulated by MIR142-3p. Autophagy. 2014;10:468–479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nguyen HT, Dalmasso G, Müller S, Carrière J, Seibold F, Darfeuille-Michaud A. Crohn’s disease-associated adherent invasive Escherichia coli modulate levels of microRNAs in intestinal epithelial cells to reduce autophagy. Gastroenterology. 2014;146:508–519.

    Article  CAS  PubMed  Google Scholar 

  65. Gibbings D, Mostowy S, Jay F, Schwab Y, Cossart P, Voinnet O. Selective autophagy degrades DICER and AGO2 and regulates miRNA activity. Nat Cell Biol. 2012;14:1314–1321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gibbings D, Mostowy S, Voinnet O. Autophagy selectively regulates miRNA homeostasis. Autophagy. 2013;9:781–783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sibony M, Abdullah M, Greenfield L, et al. Microbial disruption of autophagy alters expression of the RISC component AGO2, a critical regulator of the miRNA silencing pathway. Inflamm Bowel Dis. 2015;21:2778–2786.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Iwańczak B, Iwańczak F. Indicators of inflammatory process in stool in diagnostics and monitoring of inflammatory bowel diseases. Pol Merkur Lekarski. 2015;39:389–392.

    PubMed  Google Scholar 

  69. Vavricka SR, Rogler G, Gantenbein C, et al. Chronological order of appearance of extraintestinal manifestations relative to the time of IBD diagnosis in the swiss inflammatory bowel disease cohort. Inflamm Bowel Dis. 2015;8:1794–1800.

    Article  Google Scholar 

  70. Vucelic B. Inflammatory bowel diseases: controversies in the use of diagnostic procedures. Dig Dis. 2009;27:269–277.

    Article  PubMed  Google Scholar 

  71. Sinh P, Shen B. Endoscopic evaluation of surgically altered bowel in patients with inflammatory bowel diseases. Inflamm Bowel Dis. 2015;21:1459–1471.

    PubMed  PubMed Central  Google Scholar 

  72. Canavese G, Villanacci V, Sapino A, et al. The diagnosis of inflammatory bowel disease is often unsupported in clinical practice. Dig Liver Dis. 2015;47:20–23.

    Article  PubMed  Google Scholar 

  73. Bor R, Balanyi Z, Farkas K, et al. Comparison of symptoms, laboratory parameters and illness perception in patients with irritable bowel syndrome and inflammatory bowel disease. Orv Hetil. 2015;156:933–938.

    Article  PubMed  Google Scholar 

  74. Guo Z, Wu R, Gong J, et al. Altered microRNA expression in inflamed and non-inflamed terminal ileal mucosa of adult patients with active Crohn’s disease. J Gastroenterol Hepatol. 2015;30:109–116.

    Article  CAS  PubMed  Google Scholar 

  75. Schaefer JS, Attumi T, Opekun AR, et al. MicroRNA signatures differentiate Crohn’s disease from ulcerative colitis. BMC Immunol. 2015;16:5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Jensen MD, Andersen RF, Christensen H, Nathan T, Kjeldsen J, Madsen JS. Circulating microRNAs as biomarkers of adult Crohn’s disease. Eur J Gastroenterol Hepatol. 2015;27:1038–1044.

    Article  CAS  PubMed  Google Scholar 

  77. Peck BC, Weiser M, Lee SE, et al. MicroRNAs classify different disease behavior phenotypes of Crohn’s disease and may have prognostic utility. Inflamm Bowel Dis. 2015;21:2178–2187.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lin J, Welker NC, Zhao Z, et al. Novel specific microRNA biomarkers in idiopathic inflammatory bowel disease unrelated to disease activity. Mod Pathol. 2014;27:602–608.

    Article  CAS  PubMed  Google Scholar 

  79. Duttagupta R, DiRienzo S, Jiang R, et al. Genome-wide maps of circulating miRNA biomarkers for ulcerative colitis. PLoS ONE. 2012;2:e31241.

    Article  CAS  Google Scholar 

  80. Zahm AM, Thayu M, Hand NJ, Horner A, Leonard MB, Friedman JR. Circulating microRNA is a biomarker of pediatric crohn disease. J Pediatr Gastroenterol Nutr. 2011;53:26–33.

    Article  CAS  PubMed  Google Scholar 

  81. Brain O, Owens BM, Pichulik T, et al. The intracellular sensor NOD2 induces microRNA-29 expression in human dendritic cells to limit IL-23 release. Immunity. 2013;39:521–536.

    Article  CAS  PubMed  Google Scholar 

  82. Lewis A, Mehta S, Hanna LN, et al. Low serum levels of microRNA-19 are associated with a stricturing Crohn’s disease phenotype. Inflamm Bowel Dis. 2015;21:1926–1934.

    Article  PubMed  Google Scholar 

  83. Fasseu M, Tréton X, Guichard C, et al. Identification of restricted subsets of mature microRNA abnormally expressed in inactive colonic mucosa of patients with inflammatory bowel disease. PLoS ONE. 2010;10:e13160.

    Article  CAS  Google Scholar 

  84. Zahm AM, Hand NJ, Tsoucas DM, Le Guen CL, Baldassano RN, Friedman JR. Rectal microRNAs are perturbed in pediatric inflammatory bowel disease of the colon. J Crohns Colitis. 2014;8:1108–1117.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wu F, Guo NJ, Tian H, et al. Peripheral blood microRNAs distinguish active ulcerative colitis and Crohn’s disease. Inflamm Bowel Dis. 2011;17:241–250.

    Article  PubMed  Google Scholar 

  86. Zhang C, Zhao Z, Osman H, Watson R, Nalbantoglu I, Lin J. Differential expression of miR-31 between inflammatory bowel disease and microscopic colitis. Microrna. 2014;3:155–159.

    Article  CAS  PubMed  Google Scholar 

  87. Matijašić M, Meštrović T, Perić M, et al. Modulating composition and metabolic activity of the gut microbiota in IBD patients. Int J Mol Sci. 2016;17:578.

    Article  PubMed Central  CAS  Google Scholar 

  88. Coskun M, Bjerrum JT, Seidelin JB, Troelsen JT, Olsen J, Nielsen OH. miR-20b, miR-98, miR-125b-1*, and let-7e* as new potential diagnostic biomarkers in ulcerative colitis. World J Gastroenterol. 2013;19:4289–4299.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Koukos G, Polytarchou C, Kaplan JL, et al. A microRNA signature in pediatric ulcerative colitis: deregulation of the miR-4284/CXCL5 pathway in the intestinal epithelium. Inflamm Bowel Dis. 2015;21:996–1005.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Feng X, Wang H, Ye S, et al. Up-regulation of microRNA-126 may contribute to pathogenesis of ulcerative colitis via regulating NF-kappaB inhibitor IκBα. PLoS ONE. 2012;12:e52782.

    Article  CAS  Google Scholar 

  91. Polytarchou C, Oikonomopoulos A, Mahurkar S, et al. Assessment of circulating microRNAs for the diagnosis and disease activity evaluation in patients with ulcerative colitis by using the nanostring technology. Inflamm Bowel Dis. 2015;21:2533–2539.

    Article  PubMed  Google Scholar 

  92. Krissansen GW, Yang Y, McQueen FM, et al. Overexpression of miR-595 and miR-1246 in the sera of patients with active forms of inflammatory bowel disease. Inflamm Bowel Dis. 2015;21:520–530.

    Article  PubMed  Google Scholar 

  93. Rogler G. Where are we heading to in pharmacological IBD therapy? Pharmacol Res. 2015;100:220–227.

    Article  CAS  PubMed  Google Scholar 

  94. Cheng X, Zhang X, Su J, et al. miR-19b downregulates intestinal SOCS3 to reduce intestinal inflammation in Crohn’s disease. Sci Rep. 2015;5:10397.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Chen Y, Wang C, Liu Y, et al. miR-122 targets NOD2 to decrease intestinal epithelial cell injury in Crohn’s disease. Biochem Biophys Res Commun. 2013;438:133–139.

    Article  CAS  PubMed  Google Scholar 

  96. Huang Z, Shi T, Zhou Q, et al. miR-141 Regulates colonic leukocytic trafficking by targeting CXCL12β during murine colitis and human Crohn’s disease. Gut. 2014;63:1247–1257.

    Article  CAS  PubMed  Google Scholar 

  97. Huang Z, Shi T, Zhou Q, et al. MicroRNA-146b improves intestinal injury in mouse colitis by activating nuclear factor-kappaB and improving epithelial barrier function. J Gene Med. 2013;15:249–260.

    Google Scholar 

  98. Zwiers A, Kraal L, Van de Pouw Kraan T, Wurdinger T, Bouma G, Kraal G. Cutting edge: a variant of the IL-23r gene associated with inflammatory bowel disease induces loss of microRNA regulation and enhanced protein production. J Immunol. 2012;4:1573–1577.

    Article  CAS  Google Scholar 

  99. Van der Goten J, Vanhove W, Lemaire K, et al. Integrated miRNA and mRNA expression profiling in inflamed colon of patients with ulcerative colitis. PLoS ONE. 2014;12:e116117.

    Article  CAS  Google Scholar 

  100. El-Gowelli HM, Saad EI, Abdel-Galil AG, Ibrahim ER. Co-administration of α-lipoic acid and cyclosporine aggravates colon ulceration of acetic acid-induced ulcerative colitis via facilitation of NO/COX-2/miR-210 cascade. Toxicol Appl Pharmacol. 2015;288:300–312.

    Article  CAS  PubMed  Google Scholar 

  101. Ludwig K, Fassan M, Mescoli C, et al. PDCD4/miR-21 dysregulation in inflammatory bowel disease-associated carcinogenesis. Virchows Arch. 2013;462:57–63.

    Article  CAS  PubMed  Google Scholar 

  102. Leva GD, Garofalo M, Croce CM. MicroRNAs in cancer. Annu Rev Pathol. 2014;9:287–314.

    Article  PubMed  CAS  Google Scholar 

  103. Sohn JJ, Schetter AJ, Yfantis HG, et al. Macrophages, nitric oxide and microRNAs are associated with DNA damage response pathway and senescence in inflammatory bowel disease. PLoS ONE. 2012;7:e44156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chen Y, Xiao Y, Ge W, et al. miR-200b inhibits TGF-b1-induced epithelial-mesenchymal transition and promotes growth of intestinal epithelial cells. Cell Death Dis. 2013;4:e541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Olaru AV, Yamanaka S, Vazquez C, et al. MicroRNA-224 negatively regulates p21 expression during late neoplastic progression in inflammatory bowel disease. Inflamm Bowel Dis. 2013;19:471–480.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Necela BM, Carr JM, Asmann YW, Thompson EA. Differential Expression of microRNAs in tumors from chronically inflamed or genetic (APC Min/+) models of colon cancer. PLoS ONE. 2011;6:1–12.

    Article  CAS  Google Scholar 

  107. Thomas J, Ohtsuka M, Pichler M, Ling H. MicroRNAs: clinical relevance in colorectal cancer. Int J Mol Sci. 2015;16:28063–28076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Goel A. MicroRNAs as therapeutic targets in colitis and colitis-associated cancer: tiny players with a giant impact. Gastroenterology. 2015;149:859–861.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Polytarchou C, Hommes DW, Palumbo T, et al. MicroRNA214 is associated with progression of ulcerative colitis, and inhibition reduces development of colitis and colitis-associated cancer in mice. Gastroenterology. 2015;149:981–992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Olaru AV, Selaru FM, Mori Y, et al. Dynamic changes in the expression of MicroRNA-31 during inflammatory bowel disease-associated neoplastic transformation. Inflamm Bowel Dis. 2011;17:221–231.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Kanaan Z, Rai SN, Eichenberger MR, et al. Differential microRNA expression tracks neoplastic progression in inflammatory bowel disease-associated colorectal cancer. Hum Mutat. 2012;33:551–560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chen G, Cao S, Liu F, Liu Y. miR-195 plays a role in steroid resistance of ulcerative colitis by targeting Smad7. Biochem J. 2015;471:357–367.

    Article  CAS  PubMed  Google Scholar 

  113. Fujioka S, Nakamichi I, Esaki M, Asano K, Matsumoto T, Kitazono T. Serum microRNA levels in patients with Crohn’s disease during induction therapy by infliximab. J Gastroenterol Hepatol. 2014;6:1207–1214.

    Article  CAS  Google Scholar 

  114. Collins PD. Strategies for detecting colon cancer and dysplasia in patients with inflammatory bowel disease. Inflamm Bowel Dis. 2013;19:860–863.

    Article  PubMed  Google Scholar 

  115. Benderska N, Dittrich AL, Knaup S, et al. miRNA-26b overexpression in ulcerative colitis-associated carcinogenesis. Inflamm Bowel Dis. 2015;21:2039–2051.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Bai J, Li Y, Shao T, et al. Integrating analysis reveals microRNA-mediated pathway crosstalk among Crohn’s disease, ulcerative colitis and colorectal cancer. Mol Biosyst. 2014;9:2317–2328.

    Article  Google Scholar 

  117. Ueda Y, Ando T, Nanjo S, Ushijima T, Sugiyama T. DNA methylation of microRNA-124a is a potential risk marker of colitis-associated cancer in patients with ulcerative colitis. Dig Dis Sci. 2014;59:2444–2451.

    Article  CAS  PubMed  Google Scholar 

  118. Wan J, Xia L, Xu W, Lu N. Expression and function of miR-155 in diseases of the gastrointestinal tract. Int J Mol Sci. 2016;17:709.

    Article  PubMed Central  CAS  Google Scholar 

  119. Svrcek M, El-Murr N, Wanherdrick K, et al. Overexpression of microRNAs-155 and 21 targeting mismatch repair proteins in inflammatory bowel diseases. Carcinogenesis. 2013;34:828–834.

    Article  CAS  PubMed  Google Scholar 

  120. Tan YG, Zhang YF, Guo CJ, Yang M, Chen MY. Screening of differentially expressed microRNA in ulcerative colitis related colorectal cancer. Asian Pac J Trop Med. 2013;6:972–976.

    Article  CAS  PubMed  Google Scholar 

  121. Takagi T, Naito Y, Mizushima K, et al. Increased expression of microRNA in the inflamed colonic mucosa of patients with active ulcerative colitis. J Gastroenterol Hepatol. 2010;25:129–133.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by grant from the National Natural Scientific Foundation of China (81171923) and grant from the State Key Laboratory of Cancer Biology (CBSKL2014Z13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Hong.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, B., Zhou, X., Ma, J. et al. Role of MiRNAs in Inflammatory Bowel Disease. Dig Dis Sci 62, 1426–1438 (2017). https://doi.org/10.1007/s10620-017-4567-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-017-4567-1

Keywords

Navigation