Skip to main content

Advertisement

Log in

Determination of Anti-Anisakis Simplex Antibodies and Relationship with αβ and γδ Lymphocyte Subpopulations in Patients with Crohn’s Disease

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

The etiology of Crohn’s disease (CD) is still unknown although new theories are based on defects in innate immunity. We have previously shown a decrease in γδ T cells in CD patients. Previous studies have shown a high prevalence of anti-A. simplex immunoglobulins in CD patients. The diminution of γδ T cells in the peripheral blood and intestinal mucosa of CD patients may create a state of immunosuppression that would facilitate A. simplex infection.

Aims

To study the antibody responses to Anisakis antigens in Crohn’s disease patients and its relationship with αβ and γδ T cell subsets.

Methods

We recruited 81 CD patients and 81 healthy controls. αβ and γδ T cell subsets and anti-A. simplex antibodies were measured.

Results

Levels of anti-A. simplex IgG and IgM were significantly increased in CD patients. Almost 20% of CD patients were positive for IgG and IgM anti-A. simplex versus only 3.7 and 2.5%, respectively, in normal subjects. However, lower specific IgA levels were observed in the group of CD patients versus healthy subjects. We found an association between CD3 + CD8 + γδ subset and IgM anti-A. simplex levels. In ileal cases and stricturing behavior of CD, we observed the highest levels of specific antibodies with the exception of anti-A. simplex IgA.

Conclusions

The relationship of specific antibodies with a γδ T cell deficiency makes these cell candidates to play a role in the immune response against Anisakis. In addition, anti-Anisakis antibodies could be considered as markers of risk of progression in CD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CD:

Crohn’s disease

References

  1. Korzenik JR. Is Crohn’s disease due to defective immunity. Gut. 2007;56:2–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Marks DJ. Defective innate immunity in inflammatory bowel disease: a Crohn’s disease exclusivity? Curr Opin Gastroenterol. 2011;27:328–334.

    Article  CAS  PubMed  Google Scholar 

  3. Saito H, Kranz DM, Takagaki Y, et al. Complete primary structure of a heterodimeric T-cell receptor deduced from cDNA sequences. Nature. 1984;309:757–762.

    Article  CAS  PubMed  Google Scholar 

  4. Goodman T, Lefrançois L. Expression of the gamma-delta T-cell receptor on intestinal CD8 + intraepithelial lymphocytes. Nature. 1988;333:855–858.

    Article  CAS  PubMed  Google Scholar 

  5. Andreu-Ballester JC, Amigó-García V, Catalán-Serra I, et al. Deficit of gammadelta T lymphocytes in the peripheral blood of patients with Crohn’s disease. Dig Dis Sci. 2011;56:2613–2622. doi:10.1007/s10620-011-1636-8.

    Article  PubMed  Google Scholar 

  6. Lee HB, Kim JH, Yim CY, et al. Differences in immunophenotyping of mucosal lymphocytes between ulcerative colitis and Crohn’s disease. Korean J Intern Med. 1997;12:7–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sartor RB. Microbial factors in the pathogenesis os Crohn’s disease, ulcerative colitis and experimental intestinal inflammation. In: Kirsner JB, Shorter RJ, eds. Inflmmatory Bowel disease. 4rd ed. Baltimore: Williams and Wilkins. 1995:96–124.

  8. Daschner A, Alonso-Gómez A, Cabañas R, et al. Gastroallergic anisakiasis: borderline between food allergy and parasitic disease-clinical and allergologic evaluation of 20 patients with confirmed acute parasitism by Anisakis simplex. J Allergy Clin Immunol. 2000;105:176–181.

    Article  CAS  PubMed  Google Scholar 

  9. Puente P, Anadón AM, Rodero M, et al. Anisakis simplex: the high prevalence in Madrid (Spain) and its relation with fish consumption. Exp Parasitol. 2008;118:271–274.

    Article  PubMed  Google Scholar 

  10. Sakanari JA. Anisakis-from the platter to the microfuge. Parasitol Today. 1990;6:323–327.

    Article  CAS  PubMed  Google Scholar 

  11. Audicana MT, Kennedy MW. Anisakis simplex: from obscure infectious worm to inducer of immune hypersensitivity. Clin Microbiol Rev. 2008;21:360–379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guillén-Bueno R, Gutiérrez-Ramos R, Perteguer-Prieto MJ, et al. Anti-Anisakis Antibodies in the Clinical course of Crohn’s disease. Digestion. 1999; 268–73.

  13. García-Palacios L, González ML, Esteban MI, et al. Enzyme-linked immunosorbent assay, immunoblot analysis and RAST fluoroimmunoassay analysis of serum responses against crude larval antigens of Anisakis simplex in a Spanish random population. J Helminthol. 1996;70:281–289.

    Article  PubMed  Google Scholar 

  14. Daschner A, Cuéllar C, Sánchez-Pastor S, et al. Gastroallergic anisakiasis as a consequence of simultaneous primary and secondary immune response. Parasite Immunol. 2002;24:243–251.

    Article  PubMed  Google Scholar 

  15. Gutiérrez R, Cuéllar C. Immunoglobulins anti-Anisakis simplex in patients with gastrointestinal disease. J Helminthol. 2002;76:131–136.

    Article  PubMed  Google Scholar 

  16. Martínez de Velasco G, Rodero M, Chivato T, et al. Seroprevalence of anti-Kudoa sp. (Myxosporea: Multivalvulida) antibodies in a Spanish population. Parasitol Res. 2006;100:1205–1211.

    Article  PubMed  Google Scholar 

  17. Andreu-Ballester JC, García-Ballesteros C, Benet-Campos C, et al. Values for αβ and γδ T-lymphocytes and CD4+, CD8+, and CD56+ subsets in healthy adult subjects: assessment by age and gender. Cytometry B Clin Cytom. 2012;82:238–244.

    Article  CAS  PubMed  Google Scholar 

  18. Molodecky NA, Soon IS, Rabi DM, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology. 2012;142:46–54.

    Article  PubMed  Google Scholar 

  19. Shivananda S, Lennard-Jones J, Logan R, et al. Incidence of inflammatory bowel disease across Europe: is there a difference between north and south? Results of the European Collaborative Study on Inflammatory Bowel Disease (EC-IBD). Gut. 1996;39:690–697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Saro-Gismera C, Riestra-Menéndez S, Milla-Crespo A, et al. Incidence and prevalence of inflammatory bowel disease. Asturian study in 5 areas (EIICEA). Spain. An. Med. Interna. 2003;20:3–9.

  21. Crohn BB, Ginzburg L, Oppenheimer GD. Regional ileitis: a pathologic and clinical entity. JAMA. 1932;99:1323.

    Article  Google Scholar 

  22. ENNA. Encuesta de Presupuestos Familiares. Estudio Nacional de Nutrición y Alimentación 1991. Madrid I.N.I. 1995.

  23. EFSA Panel on Biological Hazards (BIOHAZ); Scientific Opinion on risk assessment of parasites in fishery products. EFSA J. 2010;8:1543–1633.

  24. Valiñas B, Lorenzo S, Eiras A, et al. Prevalence of and risk factors for IgE sensitization to Anisakis simplex in a Spanish population. Allergy. 2001;56:667–671.

    Article  PubMed  Google Scholar 

  25. Fernandez de Corres L, Del Pozo MD, Aizpuru F, et al. Prevalencia de la sensibilización a Anisakis simplex en tres áreas españolas, en relación a las diferentes tasas de consumo de pescado Relevancia de la alergia a Anisakis simplex. Alergología e Inmunología Clínica. 2001;16:337–346.

    Google Scholar 

  26. Del Rey A, Valero A, Mayorga C, et al. Sensitization to Anisakis simplex s.l. in a healthy population. Acta Trop. 2006;97:265–269.

    Article  Google Scholar 

  27. Andreu-Ballester JC, Pérez-Griera J, Ballester F, et al. Anisakis simplex and Kudoa sp.: evaluation of specific antibodies in appendectomized patients. Exp Parasitol. 2008;119:433–436.

    Article  CAS  PubMed  Google Scholar 

  28. Knoflach P, Park BH, Cunningham R, et al. Serum antibodies to cow’s milk proteins in ulcerative colitis and Crohn’s disease. Gastroenterology. 1987;92:479–485.

    Article  CAS  PubMed  Google Scholar 

  29. Paganelli R, Pallone F, Montano S, et al. Isotypic analysis of antibody response to a food antigen in inflammatory bowel disease. Int Arch Allergy Appl Immunol. 1985;78:81–85.

    Article  CAS  PubMed  Google Scholar 

  30. Main J, McKenzie H, Yeaman GR, et al. Antibody to Saccharomyces cerevisiae (baker’s yeast) in Crohn’s disease. BMJ. 1988;297:1105–1106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tanaka K, Kawamura H, Tohgi N, et al. The measurement of Ascaris suum protein by radioimmunoassay in sera from patients with helminthiasis and with gastrointestinal diseases. Parasitology. 1983;86:291–300.

    Article  PubMed  Google Scholar 

  32. Frehn L, Jansen A, Bennek E, et al. Distinct patterns of IgG and IgA against food and microbial antigens in serum and feces of patients with inflammatory bowel diseases. PLoS ONE. 2014;9:e106750.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Xiong Y, Wang GZ, Zhou JQ, et al. Serum antibodies to microbial antigens for Crohn’s disease progression: a meta-analysis. Eur J Gastroenterol Hepatol. 2014;26:733–742.

    Article  CAS  PubMed  Google Scholar 

  34. Antoni L, Nuding S, Wehkamp J, et al. Intestinal barrier in inflammatory bowel disease. World J Gastroenterol. 2014;20:1165–1179.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Whitacre CC, Reingold SC, O’Looney PA. A gender gap in autoimmunity. Science. 1999;283:1277–1278.

    Article  CAS  PubMed  Google Scholar 

  36. Niewiadomski O, Studd C, Hair C, et al. Prospective population-based cohort of inflammatory bowel disease in the biologics era: disease course and predictors of severity. J Gastroenterol Hepatol. 2015;30:1346–1353.

    Article  CAS  PubMed  Google Scholar 

  37. Romberg-Camps MJ, Dagnelie PC, Kester AD, et al. Influence of phenotype at diagnosis and of other potential prognostic factors on the course of inflammatory bowel disease. Am J Gastroenterol. 2009;104:371–383.

    Article  CAS  PubMed  Google Scholar 

  38. Klebl FH, Bataille F, Bertea CR, et al. Association of perinuclear antineutrophil cytoplasmic antibodies and anti-Saccharomyces cerevisiae antibodies with Vienna classification subtypes of Crohn’s disease. Inflamm Bowel Dis. 2003;9:302–307.

    Article  PubMed  Google Scholar 

  39. Baron L, Branca G, Trombetta C, et al. Intestinal anisakidosis: histopathological findings and differential diagnosis. Pathol Res Pract. 2014;210:746–750.

    Article  PubMed  Google Scholar 

  40. Montalto M, Miele L, Marcheggiano A, et al. Anisakis infestation: a case of acute abdomen mimicking Crohn’s disease and eosinophilic gastroenteritis. Dig Liver Dis. 2005;37:62–64.

    Article  CAS  PubMed  Google Scholar 

  41. Bavastrelli M, Riccardo F, Binazzi R, et al. Small intestine anisakiasis. J Ital Med Trop. 2001;6:4950.

    Google Scholar 

  42. Andreu-Ballester JC, Garcia-Ballesteros C, Amigo V, et al. Microsporidia and its relation to Crohn’s disease. A retrospective study. PLoS ONE. 2013;8:e62107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Compliance with ethical standards

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Andreu-Ballester.

Additional information

C. Benet-Campos and C. Cuellar contributed equally to this work and should be considered equal first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benet-Campos, C., Cuéllar, C., García-Ballesteros, C. et al. Determination of Anti-Anisakis Simplex Antibodies and Relationship with αβ and γδ Lymphocyte Subpopulations in Patients with Crohn’s Disease. Dig Dis Sci 62, 934–943 (2017). https://doi.org/10.1007/s10620-017-4473-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-017-4473-6

Keywords

Navigation