Skip to main content
Log in

Effects of Ex Vivo Infection with ETEC on Jejunal Barrier Properties and Cytokine Expression in Probiotic-Supplemented Pigs

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background and Aim

Enterotoxigenic Escherichia coli (ETEC) strains are involved in piglet post-weaning diarrhea. Prophylactic measures including probiotics have been examined in infection experiments with live piglets. In the present study, we have tested whether the early effects of ETEC infection can also be evoked and studied in a model in which ETEC is added to whole mucosal tissues ex vivo, and whether this response can be modulated by prior supplementation of the piglets with probiotics.

Methods

Jejunal barrier and transport properties of Enterococcus faecium-supplemented or control piglets were assessed in Ussing chambers. Part of the epithelia was challenged with an ETEC strain at the mucosal side. Fluxes of fluorescein as a marker of paracellular permeability, and the expression of selected tight junction (TJ) proteins and of proinflammatory cytokines were measured.

Results

The addition of ETEC ex vivo induced an increase in transepithelial resistance peaking in the first 2 h with a concomitant reduction in fluorescein fluxes, indicating tightening effects on barrier function. The response of short-circuit current after stimulation with PGE2 or glucose was reduced in epithelia treated with ETEC. ETEC induced a decrease in the TJ protein claudin-4 in the control diet group after 280 min and an increase in the mRNA expression of the proinflammatory cytokines interleukin-8 and TNF-α in both groups after 180 min.

Conclusions

The addition of ETEC ex vivo affected barrier function and transport properties of the jejunal tissues and enhanced cytokine expression. The differences in claudin-4 expression in the jejunum might indicate a beneficial effect of E. faecium prefeeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lanata CF, Fischer-Walker CL, Olascoaga AC, Torres CX, Aryee MJ, Black RE. Global causes of diarrheal disease mortality in children <5 years of age: a systematic review. PLoS One. 2013;8:e72788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Goswami PS, Friendship RM, Gyles CL, Poppe C, Boerlin P. Preliminary investigations of the distribution of Escherichia coli O149 in sows, piglets, and their environment. Can J Vet Res. 2011;75:57–60.

    PubMed  PubMed Central  Google Scholar 

  3. Miller BG, Newby TJ, Stokes CR, Bourne FJ. Influence of diet on postweaning malabsorption and diarrhoea in the pig. Res Vet Sci. 1984;36:187–193.

    CAS  PubMed  Google Scholar 

  4. Read LT, Hahn RW, Thompson CC, Bauer DL, Norton EB, Clements JD. Simultaneous exposure to Escherichia coli heat-labile and heat-stable enterotoxins increases fluid secretion and alters cyclic nucleotide and cytokine production by intestinal epithelial cells. Infect Immun. 2014;82:5308–5316.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Madec F, Bridoux N, Bounaix S, et al. Experimental models of porcine post-weaning colibacillosis and their relationship to post-weaning diarrhoea and digestive disorders as encountered in the field. Vet Microbiol. 2000;72:295–310.

    Article  CAS  PubMed  Google Scholar 

  6. Wieler LH, Ilieff A, Herbst W, et al. Prevalence of enteropathogens in suckling and weaned piglets with diarrhoea in southern Germany. J Vet Med B Infect Dis Vet Public Health. 2001;48:151–159.

    Article  CAS  PubMed  Google Scholar 

  7. Shimizu M, Terashima T. Appearance of enterotoxigenic Escherichia coli in piglets with diarrhea in connection with feed changes. Microbiol Immunol. 1982;26:467–477.

    Article  CAS  PubMed  Google Scholar 

  8. Tzipori S, Chandler D, Smith M, Makin T, Hennessy D. Factors contributing to postweaning diarrhoea in a large intensive piggery. Aust Vet J. 1980;56:274–278.

    Article  CAS  PubMed  Google Scholar 

  9. Pineiro M, Stanton C. Probiotic bacteria: legislative framework—requirements to evidence basis. J Nutr. 2007;137:850S–853S.

    CAS  PubMed  Google Scholar 

  10. Kiarie E, Bhandari S, Scott M, Krause DO, Nyachoti CM. Growth performance and gastrointestinal microbial ecology responses of piglets receiving Saccharomyces cerevisiae fermentation products after an oral challenge with Escherichia coli (K88). J Anim Sci. 2011;89:1062–1078.

    Article  CAS  PubMed  Google Scholar 

  11. Li XQ, Zhu YH, Zhang HF, et al. Risks associated with high-dose Lactobacillus rhamnosus in an Escherichia coli model of piglet diarrhoea: intestinal microbiota and immune imbalances. PLoS One. 2012;7:e40666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang KM, Jiang ZY, Zheng CT, Wang L, Yang XF. Effect of Lactobacillus plantarum on diarrhea and intestinal barrier function of young piglets challenged with enterotoxigenic Escherichia coli K88. J Anim Sci. 2014;92:1496–1503.

    Article  CAS  PubMed  Google Scholar 

  13. Schroeder B, Duncker S, Barth S, et al. Preventive effects of the probiotic Escherichia coli strain Nissle 1917 on acute secretory diarrhea in a pig model of intestinal infection. Dig Dis Sci. 2006;51:724–731. doi:10.1007/s10620-006-3198-8

    Article  CAS  PubMed  Google Scholar 

  14. Roselli M, Finamore A, Britti MS, et al. The novel porcine Lactobacillus sobrius strain protects intestinal cells from enterotoxigenic Escherichia coli K88 infection and prevents membrane barrier damage. J Nutr. 2007;137:2709–2716.

    CAS  PubMed  Google Scholar 

  15. Buydens P, Debeuckelaere S. Efficacy of SF 68 in the treatment of acute diarrhea. A placebo-controlled trial. Scand J Gastroenterol. 1996;31:887–891.

    Article  CAS  PubMed  Google Scholar 

  16. Wunderlich PF, Braun L, Fumagalli I, et al. Double-blind report on the efficacy of lactic acid-producing Enterococcus SF68 in the prevention of antibiotic-associated diarrhoea and in the treatment of acute diarrhoea. J Int Med Res. 1989;17:333–338.

    Article  CAS  PubMed  Google Scholar 

  17. Scharek L, Guth J, Reiter K, et al. Influence of a probiotic Enterococcus faecium strain on development of the immune system of sows and piglets. Vet Immunol Immunopathol. 2005;105:151–161.

    Article  CAS  PubMed  Google Scholar 

  18. Taras D, Vahjen W, Macha M, Simon O. Performance, diarrhea incidence, and occurrence of Escherichia coli virulence genes during long-term administration of a probiotic Enterococcus faecium strain to sows and piglets. J Anim Sci. 2006;84:608–617.

    Article  CAS  PubMed  Google Scholar 

  19. Zeyner A, Boldt E. Effects of a probiotic Enterococcus faecium strain supplemented from birth to weaning on diarrhoea patterns and performance of piglets. J Anim Physiol Anim Nutr (Berl). 2006;90:25–31.

    Article  CAS  PubMed  Google Scholar 

  20. Martens H, Gabel G, Strozyk H. The effect of potassium and the transmural potential difference on magnesium transport across an isolated preparation of sheep rumen epithelium. Q J Exp Physiol. 1987;72:181–188.

    Article  CAS  PubMed  Google Scholar 

  21. Klingspor S, Martens H, Caushi D, Twardziok S, Aschenbach JR, Lodemann U. Characterization of the effects of Enterococcus faecium on intestinal epithelial transport properties in piglets. J Anim Sci. 2013;91:1707–1718.

    Article  CAS  PubMed  Google Scholar 

  22. Klingspor S, Bondzio A, Martens H, et al. Enterococcus faecium NCIMB 10415 modulates epithelial integrity, heat shock protein, and proinflammatory cytokine response in intestinal cells. Mediators Inflamm. 2015;2015:304149.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lalles JP, Bosi P, Smidt H, Stokes CR. Weaning—a challenge to gut physiologists. Livest Sci. 2007;108:82–93.

    Article  Google Scholar 

  24. Rezzola S, Belleri M, Gariano G, et al. In vitro and ex vivo retina angiogenesis assays. Angiogenesis. 2014;17:429–442.

    Article  CAS  PubMed  Google Scholar 

  25. Schuller S, Chong Y, Lewin J, Kenny B, Frankel G, Phillips AD. Tir phosphorylation and Nck/N-WASP recruitment by enteropathogenic and enterohaemorrhagic Escherichia coli during ex vivo colonization of human intestinal mucosa is different to cell culture models. Cell Microbiol. 2007;9:1352–1364.

    Article  CAS  PubMed  Google Scholar 

  26. Gao Y, Han F, Huang X, Rong Y, Yi H, Wang Y. Changes in gut microbial populations, intestinal morphology, expression of tight junction proteins, and cytokine production between two pig breeds after challenge with Escherichia coli K88: a comparative study. J Anim Sci. 2013;91:5614–5625.

    Article  CAS  PubMed  Google Scholar 

  27. Egberts HJ, de Groot EC, van Dijk JE, Vellenga L, Mouwen JM. Tight junctional structure and permeability of porcine jejunum after enterotoxic Escherichia coli infection. Res Vet Sci. 1993;55:10–14.

    Article  CAS  PubMed  Google Scholar 

  28. McLamb BL, Gibson AJ, Overman EL, Stahl C, Moeser AJ. Early weaning stress in pigs impairs innate mucosal immune responses to enterotoxigenic E. coli challenge and exacerbates intestinal injury and clinical disease. PLoS One. 2013;8:e59838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Awad WA, Hess C, Khayal B, Aschenbach JR, Hess M. In vitro exposure to Escherichia coli decreases ion conductance in the jejunal epithelium of broiler chickens. PLoS One. 2014;9:e92156.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tanimoto Y, Arikawa K, Nishikawa Y. Effect of diffusely adherent Escherichia coli strains isolated from diarrhoeal patients and healthy carriers on IL-8 secretion and tight junction barrier integrity of Caco-2 cells. Vet Immunol Immunopathol. 2013;152:183–188.

    Article  CAS  PubMed  Google Scholar 

  31. Awad WA, Aschenbach JR, Khayal B, Hess C, Hess M. Intestinal epithelial responses to Salmonella enterica serovar Enteritidis: effects on intestinal permeability and ion transport. Poult Sci. 2012;91:2949–2957.

    Article  CAS  PubMed  Google Scholar 

  32. Krug SM, Schulzke JD, Fromm M. Tight junction, selective permeability, and related diseases. Semin Cell Dev Biol. 2014;36:166–176.

    Article  CAS  PubMed  Google Scholar 

  33. Rahner C, Mitic LL, Anderson JM. Heterogeneity in expression and subcellular localization of claudins 2, 3, 4, and 5 in the rat liver, pancreas, and gut. Gastroenterology. 2001;120:411–422.

    Article  CAS  PubMed  Google Scholar 

  34. Pasternak JA, Kent-Dennis C, Van Kessel AG, Wilson HL. Claudin-4 undergoes age-dependent change in cellular localization on pig jejunal villous epithelial cells, independent of bacterial colonization. Mediators Inflamm. 2015;2015:263629.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Markov AG, Aschenbach JR, Amasheh S. Claudin clusters as determinants of epithelial barrier function. IUBMB Life. 2015;67:29–35.

    Article  CAS  PubMed  Google Scholar 

  36. Van Itallie CM, Fanning AS, Anderson JM. Reversal of charge selectivity in cation or anion-selective epithelial lines by expression of different claudins. Am J Physiol Renal Physiol. 2003;285:F1078–F1084.

    Article  PubMed  Google Scholar 

  37. Mitic LL, Unger VM, Anderson JM. Expression, solubilization, and biochemical characterization of the tight junction transmembrane protein claudin-4. Protein Sci. 2003;12:218–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Goswami P, Das P, Verma AK, et al. Are alterations of tight junctions at molecular and ultrastructural level different in duodenal biopsies of patients with celiac disease and Crohn’s disease? Virchows Arch. 2014;465:521–530.

    Article  CAS  PubMed  Google Scholar 

  39. Das P, Goswami P, Das TK, et al. Comparative tight junction protein expressions in colonic Crohn’s disease, ulcerative colitis, and tuberculosis: a new perspective. Virchows Arch. 2012;460:261–270.

    Article  CAS  PubMed  Google Scholar 

  40. Hering NA, Richter JF, Krug SM, et al. Yersinia enterocolitica induces epithelial barrier dysfunction through regional tight junction changes in colonic HT-29/B6 cell monolayers. Lab Invest. 2011;91:310–324.

    Article  CAS  PubMed  Google Scholar 

  41. Troeger H, Loddenkemper C, Schneider T, et al. Structural and functional changes of the duodenum in human norovirus infection. Gut. 2009;58:1070–1077.

    Article  CAS  PubMed  Google Scholar 

  42. Bruewer M, Luegering A, Kucharzik T, et al. Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. J Immunol. 2003;171:6164–6172.

    Article  CAS  PubMed  Google Scholar 

  43. Hamada K, Kakigawa N, Sekine S, Shitara Y, Horie T. Disruption of ZO-1/claudin-4 interaction in relation to inflammatory responses in methotrexate-induced intestinal mucositis. Cancer Chemother Pharmacol. 2013;72:757–765.

    Article  CAS  PubMed  Google Scholar 

  44. Wells JM, Rossi O, Meijerink M, van Baarlen P. Epithelial crosstalk at the microbiota-mucosal interface. Proc Natl Acad Sci USA. 2011;108:4607–4614.

    Article  CAS  PubMed  Google Scholar 

  45. Shaw MH, Reimer T, Kim YG, Nunez G. NOD-like receptors (NLRs): bona fide intracellular microbial sensors. Curr Opin Immunol. 2008;20:377–382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Robertson SJ, Girardin SE. Nod-like receptors in intestinal host defense: controlling pathogens, the microbiota, or both? Curr Opin Gastroenterol. 2013;29:15–22.

    Article  CAS  PubMed  Google Scholar 

  47. Strowig T, Henao-Mejia J, Elinav E, Flavell R. Inflammasomes in health and disease. Nature. 2012;481:278–286.

    Article  CAS  PubMed  Google Scholar 

  48. Vladimer GI, Marty-Roix R, Ghosh S, Weng D, Lien E. Inflammasomes and host defenses against bacterial infections. Curr Opin Microbiol. 2013;16:23–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Finamore A, Roselli M, Imbinto A, Seeboth J, Oswald IP, Mengheri E. Lactobacillus amylovorus inhibits the TLR4 inflammatory signaling triggered by enterotoxigenic Escherichia coli via modulation of the negative regulators and involvement of TLR2 in intestinal Caco-2 cells and pig explants. PLoS One. 2014;9:e94891.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zanello G, Berri M, Dupont J, et al. Saccharomyces cerevisiae modulates immune gene expressions and inhibits ETEC-mediated ERK1/2 and p38 signaling pathways in intestinal epithelial cells. PLoS One. 2011;6:e18573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bruins MJ, Cermak R, Kiers JL, van der Meulen J, van Amelsvoort JM, van Klinken BJ. In vivo and in vitro effects of tea extracts on enterotoxigenic Escherichia coli-induced intestinal fluid loss in animal models. J Pediatr Gastroenterol Nutr. 2006;43:459–469.

    Article  CAS  PubMed  Google Scholar 

  52. Hediger MA, Kanai Y, You G, Nussberger S. Mammalian ion-coupled solute transporters. J Physiol. 1995;482:7S–17S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Grondahl ML, Thorboll JE, Hansen MB, Skadhauge E. Regional differences in the effect of cholera toxin and enterotoxigenic Escherichia coli infection on electrolyte and fluid transport in the porcine small intestine. Zentralbl Veterinarmed A. 1998;45:369–381.

    Article  CAS  PubMed  Google Scholar 

  54. Hayden UL, Greenberg RN, Carey HV. Role of prostaglandins and enteric nerves in Escherichia coli heat-stable enterotoxin (STa)-induced intestinal secretion in pigs. Am J Vet Res. 1996;57:211–215.

    CAS  PubMed  Google Scholar 

  55. Conour JE, Ganessunker D, Tappenden KA, Donovan SM, Gaskins HR. Acidomucin goblet cell expansion induced by parenteral nutrition in the small intestine of piglets. Am J Physiol Gastrointest Liver Physiol. 2002;283:G1185–G1196.

    Article  CAS  PubMed  Google Scholar 

  56. Bi J, Song S, Fang L, et al. Porcine reproductive and respiratory syndrome virus induces IL-1beta production depending on TLR4/MyD88 pathway and NLRP3 inflammasome in primary porcine alveolar macrophages. Mediators Inflamm. 2014;2014:403515.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ramsay TG, Caperna TJ. Ontogeny of adipokine expression in neonatal pig adipose tissue. Comp Biochem Physiol B Biochem Mol Biol. 2009;152:72–78.

    Article  CAS  PubMed  Google Scholar 

  58. Amoozadeh Y, Dan Q, Xiao J, Waheed F, Szaszi K. Tumor necrosis factor-alpha induces a biphasic change in claudin-2 expression in tubular epithelial cells: role in barrier functions. Am J Physiol Cell Physiol. 2015;309:C38–C50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank K. Wolf, U. Tietjen, and G. Greco for technical support, and K. Wolf for help with the analysis of data. This research was financially supported by the German Research Foundation, Grant No. SFB 852/2 and LO 2058/1-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Lodemann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lodemann, U., Amasheh, S., Radloff, J. et al. Effects of Ex Vivo Infection with ETEC on Jejunal Barrier Properties and Cytokine Expression in Probiotic-Supplemented Pigs. Dig Dis Sci 62, 922–933 (2017). https://doi.org/10.1007/s10620-016-4413-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-016-4413-x

Keywords

Navigation