Digestive Diseases and Sciences

, Volume 61, Issue 10, pp 2784–2803 | Cite as

Nature and Implications of Oxidative and Nitrosative Stresses in Autoimmune Hepatitis

  • Albert J. Czaja


Oxidative and nitrosative stresses can damage cellular membranes, disrupt mitochondrial function, alter gene expression, promote the apoptosis and necrosis of hepatocytes, and increase fibrosis in diverse acute and chronic liver diseases, including autoimmune hepatitis. The objectives of this review are to describe the mechanisms of oxidative and nitrosative stresses in inflammatory liver disease, indicate the pathogenic implications of these stresses in autoimmune hepatitis, and suggest investigational opportunities to develop interventions that counter them. The principal antioxidant defenses, including glutathione production, the activities of antioxidant enzymes, and the release of the nuclear factor erythroid 2-related factor 2, may be inadequate or suppressed by transforming growth factor beta. The generation of reactive oxygen species can intensify nitrosative stress, and this stress may not be adequately modulated by the thioredoxin–thioredoxin reductase system and induce post-translational modifications of proteins that further disrupt hepatocyte function. The unfolded protein response and autophagy may be unable to restore redox stability, meet metabolic demands, and maintain hepatocyte survival. Emerging interventions with highly selective site- and organelle-specific actions may improve outcomes, and they include inhibitors of nicotinamide adenine dinucleotide phosphate oxidase, nitric oxide synthase, and transforming growth factor beta. Pharmacological manipulation of nuclear transcription factors may favor expression of antioxidant genes, and stimulation of chaperone proteins within the endoplasmic reticulum and modulation of autophagy may prevent hepatic fibrosis and enhance cell survival. These interventions constitute investigational opportunities to improve the management of autoimmune hepatitis.


Autoimmune hepatitis Oxidative stress Nitrosative stress Interventions 


Author contribution

Albert J. Czaja, MD researched, designed, and wrote this article. The tables are original, constructed by Dr. Czaja, fully referenced, and developed solely for this review.

Compliance with ethical standards

Conflict of interest

This review did not receive financial support from a funding agency or institution, and Albert J. Czaja, MD has no conflict of interests to declare.


  1. 1.
    Galicia-Moreno M, Gutierrez-Reyes G. The role of oxidative stress in the development of alcoholic liver disease. Rev Gastroenterol Mex. 2014;79:135–144.PubMedGoogle Scholar
  2. 2.
    Louvet A, Mathurin P. Alcoholic liver disease: mechanisms of injury and targeted treatment. Nat Rev Gastroenterol Hepatol. 2015;12:231–242.PubMedCrossRefGoogle Scholar
  3. 3.
    Koek GH, Liedorp PR, Bast A. The role of oxidative stress in non-alcoholic steatohepatitis. Clin Chim Acta. 2011;412:1297–1305.PubMedCrossRefGoogle Scholar
  4. 4.
    Sumida Y, Niki E, Naito Y, Yoshikawa T. Involvement of free radicals and oxidative stress in NAFLD/NASH. Free Radic Res. 2013;47:869–880.PubMedCrossRefGoogle Scholar
  5. 5.
    Liu W, Baker SS, Baker RD, Zhu L. Antioxidant mechanisms in nonalcoholic fatty liver disease. Curr Drug Targets. 2015;16:1301–1314.PubMedCrossRefGoogle Scholar
  6. 6.
    Ciftci A, Yilmaz B, Koklu S, et al. Serum levels of nitrate, nitrite and advanced oxidation protein products (AOPP) in patients with nonalcoholic fatty liver disease. Acta Gastroenterol Belg. 2015;78:201–205.PubMedGoogle Scholar
  7. 7.
    Choi J, Ou JH. Mechanisms of liver injury. III. Oxidative stress in the pathogenesis of hepatitis C virus. Am J Physiol Gastrointest Liver Physiol. 2006;290:G847–G851.PubMedCrossRefGoogle Scholar
  8. 8.
    Choi J, Corder NL, Koduru B, Wang Y. Oxidative stress and hepatic Nox proteins in chronic hepatitis C and hepatocellular carcinoma. Free Radic Biol Med. 2014;72:267–284.PubMedCrossRefGoogle Scholar
  9. 9.
    Russmann S, Kullak-Ublick GA, Grattagliano I. Current concepts of mechanisms in drug-induced hepatotoxicity. Curr Med Chem. 2009;16:3041–3053.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Matsuo K, Sasaki E, Higuchi S, et al. Involvement of oxidative stress and immune- and inflammation-related factors in azathioprine-induced liver injury. Toxicol Lett. 2014;224:215–224.PubMedCrossRefGoogle Scholar
  11. 11.
    Grattagliano I, Calamita G, Cocco T, Wang DQ, Portincasa P. Pathogenic role of oxidative and nitrosative stress in primary biliary cirrhosis. World J Gastroenterol. 2014;20:5746–5759.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Sanz-Cameno P, Medina J, Garcia-Buey L, et al. Enhanced intrahepatic inducible nitric oxide synthase expression and nitrotyrosine accumulation in primary biliary cirrhosis and autoimmune hepatitis. J Hepatol. 2002;37:723–729.PubMedCrossRefGoogle Scholar
  13. 13.
    Pemberton PW, Aboutwerat A, Smith A, et al. Oxidant stress in type I autoimmune hepatitis: the link between necroinflammation and fibrogenesis? Biochim Biophys Acta. 2004;1689:182–189.PubMedCrossRefGoogle Scholar
  14. 14.
    Beyazit Y, Kocak E, Tanoglu A, Kekilli M. Oxidative stress might play a role in low serum vitamin D associated liver fibrosis among patients with autoimmune hepatitis. Dig Dis Sci. 2015;60:1106–1108. doi: 10.1007/s10620-015-3526-y.PubMedCrossRefGoogle Scholar
  15. 15.
    Richter K, Konzack A, Pihlajaniemi T, Heljasvaara R, Kietzmann T. Redox-fibrosis: impact of TGFbeta1 on ROS generators, mediators and functional consequences. Redox Biol. 2015;6:344–352.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    De Minicis S, Brenner DA. NOX in liver fibrosis. Arch Biochem Biophys. 2007;462:266–272.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Paik YH, Kim J, Aoyama T, et al. Role of NADPH oxidases in liver fibrosis. Antioxid Redox Signal. 2014;20:2854–2872.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Cui W, Matsuno K, Iwata K, et al. NOX1/nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) oxidase promotes proliferation of stellate cells and aggravates liver fibrosis induced by bile duct ligation. Hepatology. 2011;54:949–958.PubMedCrossRefGoogle Scholar
  19. 19.
    Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol. 2000;2:326–332.PubMedCrossRefGoogle Scholar
  20. 20.
    Hernandez-Gea V, Hilscher M, Rozenfeld R, et al. Endoplasmic reticulum stress induces fibrogenic activity in hepatic stellate cells through autophagy. J Hepatol. 2013;59:98–104.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Tanjore H, Lawson WE, Blackwell TS. Endoplasmic reticulum stress as a pro-fibrotic stimulus. Biochim Biophys Acta. 2013;1832:940–947.PubMedCrossRefGoogle Scholar
  22. 22.
    Yuzefovych LV, Musiyenko SI, Wilson GL, Rachek LI. Mitochondrial DNA damage and dysfunction, and oxidative stress are associated with endoplasmic reticulum stress, protein degradation and apoptosis in high fat diet-induced insulin resistance mice. PLoS One. 2013;8:e54059.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Radi R, Beckman JS, Bush KM, Freeman BA. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem. 1991;266:4244–4250.PubMedGoogle Scholar
  24. 24.
    Calcerrada P, Peluffo G, Radi R. Nitric oxide-derived oxidants with a focus on peroxynitrite: molecular targets, cellular responses and therapeutic implications. Curr Pharm Des. 2011;17:3905–3932.PubMedCrossRefGoogle Scholar
  25. 25.
    Czaja AJ. Hepatic inflammation and progressive liver fibrosis in chronic liver disease. World J Gastroenterol. 2014;20:2515–2532.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology. 2008;134:1655–1669.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Chambel SS, Santos-Goncalves A, Duarte TL. The Dual Role of Nrf2 in Nonalcoholic Fatty Liver Disease: Regulation of Antioxidant Defenses and Hepatic Lipid Metabolism. Biomed Res Int. 2015;2015:597134.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Hiura M, Honma Y, Miyagawa K, et al. Alleviation mechanisms against hepatocyte oxidative stress in patients with chronic hepatic disorders. Hepatol Res. 2015;45:1124–1135.PubMedCrossRefGoogle Scholar
  29. 29.
    Szeto HH. Cell-permeable, mitochondrial-targeted, peptide antioxidants. AAPS J. 2006;8:E277–E283.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Murphy MP, Smith RA. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol. 2007;47:629–656.PubMedCrossRefGoogle Scholar
  31. 31.
    Skulachev VP, Antonenko YN, Cherepanov DA, et al. Prevention of cardiolipin oxidation and fatty acid cycling as two antioxidant mechanisms of cationic derivatives of plastoquinone (SkQs). Biochim Biophys Acta. 2010;1797:878–889.PubMedCrossRefGoogle Scholar
  32. 32.
    Pal A, Fontanilla D, Gopalakrishnan A, et al. The sigma-1 receptor protects against cellular oxidative stress and activates antioxidant response elements. Eur J Pharmacol. 2012;682:12–20.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Esrefoglu M. Oxidative stress and benefits of antioxidant agents in acute and chronic hepatitis. Hepat Mon. 2012;12:160–167.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease. World J Gastroenterol. 2014;20:14205–14218.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Kono H, Rusyn I, Yin M, et al. NADPH oxidase-derived free radicals are key oxidants in alcohol-induced liver disease. J Clin Investig. 2000;106:867–872.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Wheeler MD, Kono H, Yin M, et al. The role of Kupffer cell oxidant production in early ethanol-induced liver disease. Free Radic Biol Med. 2001;31:1544–1549.PubMedCrossRefGoogle Scholar
  37. 37.
    Hikita H, Kodama T, Tanaka S, et al. Activation of the mitochondrial apoptotic pathway produces reactive oxygen species and oxidative damage in hepatocytes that contribute to liver tumorigenesis. Cancer Prev Res (Phila). 2015;8:693–701.CrossRefGoogle Scholar
  38. 38.
    Alba G, Reyes ME, Santa-Maria C, et al. Transcription of liver X receptor is down-regulated by 15-deoxy-Delta(12,14)-prostaglandin J(2) through oxidative stress in human neutrophils. PLoS One. 2012;7:e42195.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Reyes-Quiroz ME, Alba G, Santa-Maria C, et al. Platelet-activating factor downregulates the expression of liver X receptor-alpha and its target genes in human neutrophils. FEBS J. 2014;281:970–982.PubMedCrossRefGoogle Scholar
  40. 40.
    Tian J, Feng Y, Fu H, et al. The aryl hydrocarbon receptor: a key bridging molecule of external and internal chemical signals. Environ Sci Technol. 2015;49:9518–9531.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Pascual-Garcia M, Valledor AF. Biological roles of liver X receptors in immune cells. Arch Immunol Ther Exp (Warsz). 2012;60:235–249.CrossRefGoogle Scholar
  42. 42.
    Glass CK, Ogawa S. Combinatorial roles of nuclear receptors in inflammation and immunity. Nat Rev Immunol. 2006;6:44–55.PubMedCrossRefGoogle Scholar
  43. 43.
    Ghisletti S, Huang W, Jepsen K, et al. Cooperative NCoR/SMRT interactions establish a corepressor-based strategy for integration of inflammatory and anti-inflammatory signaling pathways. Genes Dev. 2009;23:681–693.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Gong H, He J, Lee JH, et al. Activation of the liver X receptor prevents lipopolysaccharide-induced lung injury. J Biol Chem. 2009;284:30113–30121.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Gu YZ, Hogenesch JB, Bradfield CA. The PAS superfamily: sensors of environmental and developmental signals. Annu Rev Pharmacol Toxicol. 2000;40:519–561.PubMedCrossRefGoogle Scholar
  46. 46.
    Veldhoen M, Hirota K, Westendorf AM, et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature. 2008;453:106–109.PubMedCrossRefGoogle Scholar
  47. 47.
    Quintana FJ, Basso AS, Iglesias AH, et al. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature. 2008;453:65–71.PubMedCrossRefGoogle Scholar
  48. 48.
    Rohlman D, Pham D, Yu Z, Steppan LB, Kerkvliet NI. Aryl hydrocarbon receptor-mediated perturbations in gene expression during early stages of CD4(+) T-cell differentiation. Front Immunol. 2012;3:223.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Pierre S, Chevallier A, Teixeira-Clerc F, et al. Aryl hydrocarbon receptor–dependent induction of liver fibrosis by dioxin. Toxicol Sci. 2014;137:114–124.PubMedCrossRefGoogle Scholar
  50. 50.
    Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417:1–13.PubMedCrossRefGoogle Scholar
  51. 51.
    Hensley K, Robinson KA, Gabbita SP, Salsman S, Floyd RA. Reactive oxygen species, cell signaling, and cell injury. Free Radic Biol Med. 2000;28:1456–1462.PubMedCrossRefGoogle Scholar
  52. 52.
    Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44–84.PubMedCrossRefGoogle Scholar
  53. 53.
    Sies H. Oxidative stress: oxidants and antioxidants. Exp Physiol. 1997;82:291–295.PubMedCrossRefGoogle Scholar
  54. 54.
    Houtkooper RH, Vaz FM. Cardiolipin, the heart of mitochondrial metabolism. Cell Mol Life Sci. 2008;65:2493–2506.PubMedCrossRefGoogle Scholar
  55. 55.
    Schlame M, Ren M. The role of cardiolipin in the structural organization of mitochondrial membranes. Biochim Biophys Acta. 2009;1788:2080–2083.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Cardiolipin and mitochondrial function in health and disease. Antioxid Redox Signal. 2014;20:1925–1953.PubMedCrossRefGoogle Scholar
  57. 57.
    Gonzalvez F, Gottlieb E. Cardiolipin: setting the beat of apoptosis. Apoptosis. 2007;12:877–885.PubMedCrossRefGoogle Scholar
  58. 58.
    Chicco AJ, Sparagna GC. Role of cardiolipin alterations in mitochondrial dysfunction and disease. Am J Physiol Cell Physiol. 2007;292:C33–C44.PubMedCrossRefGoogle Scholar
  59. 59.
    Musatov A, Robinson NC. Susceptibility of mitochondrial electron-transport complexes to oxidative damage. Focus on cytochrome c oxidase. Free Radic Res. 2012;46:1313–1326.PubMedCrossRefGoogle Scholar
  60. 60.
    Paradies G, Paradies V, De Benedictis V, Ruggiero FM, Petrosillo G. Functional role of cardiolipin in mitochondrial bioenergetics. Biochim Biophys Acta. 2014;1837:408–417.PubMedCrossRefGoogle Scholar
  61. 61.
    Samoylenko A, Hossain JA, Mennerich D, et al. Nutritional countermeasures targeting reactive oxygen species in cancer: from mechanisms to biomarkers and clinical evidence. Antioxid Redox Signal. 2013;19:2157–2196.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Brown DI, Griendling KK. Nox proteins in signal transduction. Free Radic Biol Med. 2009;47:1239–1253.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Crestani B, Besnard V, Boczkowski J. Signalling pathways from NADPH oxidase-4 to idiopathic pulmonary fibrosis. Int J Biochem Cell Biol. 2011;43:1086–1089.PubMedCrossRefGoogle Scholar
  64. 64.
    Paik YH, Iwaisako K, Seki E, et al. The nicotinamide adenine dinucleotide phosphate oxidase (NOX) homologues NOX1 and NOX2/gp91(phox) mediate hepatic fibrosis in mice. Hepatology. 2011;53:1730–1741.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Bettaieb A, Jiang JX, Sasaki Y, et al. Hepatocyte nicotinamide adenine dinucleotide phosphate reduced oxidase 4 regulates stress signaling, fibrosis, and insulin sensitivity during development of steatohepatitis in mice. Gastroenterology. 2015;149:468–480. (e410).PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Arsalane K, Dubois CM, Muanza T, et al. Transforming growth factor-beta1 is a potent inhibitor of glutathione synthesis in the lung epithelial cell line A549: transcriptional effect on the GSH rate-limiting enzyme gamma-glutamylcysteine synthetase. Am J Respir Cell Mol Biol. 1997;17:599–607.PubMedCrossRefGoogle Scholar
  67. 67.
    Sturrock A, Cahill B, Norman K, et al. Transforming growth factor-beta1 induces Nox4 NAD(P)H oxidase and reactive oxygen species-dependent proliferation in human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2006;290:L661–L673.PubMedCrossRefGoogle Scholar
  68. 68.
    Carmona-Cuenca I, Roncero C, Sancho P, et al. Upregulation of the NADPH oxidase NOX4 by TGF-beta in hepatocytes is required for its pro-apoptotic activity. J Hepatol. 2008;49:965–976.PubMedCrossRefGoogle Scholar
  69. 69.
    Boudreau HE, Casterline BW, Rada B, Korzeniowska A, Leto TL. Nox4 involvement in TGF-beta and SMAD3-driven induction of the epithelial-to-mesenchymal transition and migration of breast epithelial cells. Free Radic Biol Med. 2012;53:1489–1499.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Verslype C, George C, Buchel E, et al. Diagnosis and treatment of autoimmune hepatitis at age 65 and older. Aliment Pharmacol Ther. 2005;21:695–699.PubMedCrossRefGoogle Scholar
  71. 71.
    Czaja AJ, Carpenter HA. Distinctive clinical phenotype and treatment outcome of type 1 autoimmune hepatitis in the elderly. Hepatology. 2006;43:532–538.PubMedCrossRefGoogle Scholar
  72. 72.
    Miyake Y, Iwasaki Y, Takaki A, et al. Clinical features of Japanese elderly patients with type 1 autoimmune hepatitis. Intern Med. 2007;46:1945–1949.PubMedCrossRefGoogle Scholar
  73. 73.
    Czaja AJ. Clinical features, differential diagnosis and treatment of autoimmune hepatitis in the elderly. Drugs Aging. 2008;25:219–239.PubMedCrossRefGoogle Scholar
  74. 74.
    Thannickal VJ. Aging, antagonistic pleiotropy and fibrotic disease. Int J Biochem Cell Biol. 2010;42:1398–1400.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Hecker L, Logsdon NJ, Kurundkar D, et al. Reversal of persistent fibrosis in aging by targeting Nox4-Nrf2 redox imbalance. Sci Transl Med. 2014;6:231ra247. doi: 10.1126/scitranslmed.3008182.CrossRefGoogle Scholar
  76. 76.
    Jarman ER, Khambata VS, Cope C, et al. An inhibitor of NADPH oxidase-4 attenuates established pulmonary fibrosis in a rodent disease model. Am J Respir Cell Mol Biol. 2014;50:158–169.PubMedGoogle Scholar
  77. 77.
    Jiang JX, Chen X, Serizawa N, et al. Liver fibrosis and hepatocyte apoptosis are attenuated by GKT137831, a novel NOX4/NOX1 inhibitor in vivo. Free Radic Biol Med. 2012;53:289–296.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Verrecchia F, Chu ML, Mauviel A. Identification of novel TGF-beta/Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach. J Biol Chem. 2001;276:17058–17062.PubMedCrossRefGoogle Scholar
  79. 79.
    Proell V, Carmona-Cuenca I, Murillo MM, et al. TGF-beta dependent regulation of oxygen radicals during transdifferentiation of activated hepatic stellate cells to myofibroblastoid cells. Comp Hepatol. 2007;6:1.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Kayanoki Y, Fujii J, Suzuki K, et al. Suppression of antioxidative enzyme expression by transforming growth factor-beta 1 in rat hepatocytes. J Biol Chem. 1994;269:15488–15492.PubMedGoogle Scholar
  81. 81.
    Islam KN, Kayanoki Y, Kaneto H, et al. TGF-beta1 triggers oxidative modifications and enhances apoptosis in HIT cells through accumulation of reactive oxygen species by suppression of catalase and glutathione peroxidase. Free Radic Biol Med. 1997;22:1007–1017.PubMedCrossRefGoogle Scholar
  82. 82.
    Michaeloudes C, Sukkar MB, Khorasani NM, Bhavsar PK, Chung KF. TGF-beta regulates Nox4, MnSOD and catalase expression, and IL-6 release in airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2011;300:L295–L304.PubMedCrossRefGoogle Scholar
  83. 83.
    Jobling MF, Mott JD, Finnegan MT, et al. Isoform-specific activation of latent transforming growth factor beta (LTGF-beta) by reactive oxygen species. Radiat Res. 2006;166:839–848.PubMedCrossRefGoogle Scholar
  84. 84.
    Roberts AB, Tian F, Byfield SD, et al. Smad3 is key to TGF-beta-mediated epithelial-to-mesenchymal transition, fibrosis, tumor suppression and metastasis. Cytokine Growth Factor Rev. 2006;17:19–27.PubMedCrossRefGoogle Scholar
  85. 85.
    Bernard K, Hecker L, Luckhardt TR, Cheng G, Thannickal VJ. NADPH oxidases in lung health and disease. Antioxid Redox Signal. 2014;20:2838–2853.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Lewis KN, Mele J, Hayes JD, Buffenstein R. Nrf2, a guardian of healthspan and gatekeeper of species longevity. Integr Comp Biol. 2010;50:829–843.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Hecker L, Vittal R, Jones T, et al. NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med. 2009;15:1077–1081.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Grattagliano I, Portincasa P, Cocco T, et al. Effect of dietary restriction and N-acetylcysteine supplementation on intestinal mucosa and liver mitochondrial redox status and function in aged rats. Exp Gerontol. 2004;39:1323–1332.PubMedCrossRefGoogle Scholar
  89. 89.
    Valencia AP, Schappal AE, Matthew Morris E, et al. The presence of the ovary prevents hepatic mitochondrial oxidative stress in young and aged female mice through glutathione peroxidase 1. Exp Gerontol. 2016;73:14–22.PubMedCrossRefGoogle Scholar
  90. 90.
    Schroder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem. 2005;74:739–789.PubMedCrossRefGoogle Scholar
  91. 91.
    Selman M, Rojas M, Mora AL, Pardo A. Aging and interstitial lung diseases: unraveling an old forgotten player in the pathogenesis of lung fibrosis. Semin Respir Crit Care Med. 2010;31:607–617.PubMedCrossRefGoogle Scholar
  92. 92.
    Castriotta RJ, Eldadah BA, Foster WM, et al. Workshop on idiopathic pulmonary fibrosis in older adults. Chest. 2010;138:693–703.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Pall ML, Levine S. Nrf2, a master regulator of detoxification and also antioxidant, anti-inflammatory and other cytoprotective mechanisms, is raised by health promoting factors. Sheng Li Xue Bao. 2015;67:1–18.PubMedGoogle Scholar
  94. 94.
    Foyer CH, Noctor G. Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 2011;155:2–18.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Loguercio C, Federico A. Oxidative stress in viral and alcoholic hepatitis. Free Radic Biol Med. 2003;34:1–10.PubMedCrossRefGoogle Scholar
  96. 96.
    Loguercio C, Di Pierro M. The role of glutathione in the gastrointestinal tract: a review. Ital J Gastroenterol Hepatol. 1999;31:401–407.PubMedGoogle Scholar
  97. 97.
    Winterbourn CC, Metodiewa D. The reaction of superoxide with reduced glutathione. Arch Biochem Biophys. 1994;314:284–290.PubMedCrossRefGoogle Scholar
  98. 98.
    Winterbourn CC. Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol. 2008;4:278–286.PubMedCrossRefGoogle Scholar
  99. 99.
    Amores-Sanchez MI, Medina MA. Glutamine, as a precursor of glutathione, and oxidative stress. Mol Genet Metab. 1999;67:100–105.PubMedCrossRefGoogle Scholar
  100. 100.
    Ramani K, Tomasi ML, Yang H, Ko K, Lu SC. Mechanism and significance of changes in glutamate–cysteine ligase expression during hepatic fibrogenesis. J Biol Chem. 2012;287:36341–36355.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Jain SK, Micinski D. Vitamin D upregulates glutamate cysteine ligase and glutathione reductase, and GSH formation, and decreases ROS and MCP-1 and IL-8 secretion in high-glucose exposed U937 monocytes. Biochem Biophys Res Commun. 2013;437:7–11.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Alvarez JA, Chowdhury R, Jones DP, et al. Vitamin D status is independently associated with plasma glutathione and cysteine thiol/disulphide redox status in adults. Clin Endocrinol (Oxf). 2014;81:458–466.CrossRefGoogle Scholar
  103. 103.
    Suh JH, Shenvi SV, Dixon BM, et al. Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proc Natl Acad Sci USA. 2004;101:3381–3386.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Shih PH, Yen GC. Differential expressions of antioxidant status in aging rats: the role of transcriptional factor Nrf2 and MAPK signaling pathway. Biogerontology. 2007;8:71–80.PubMedCrossRefGoogle Scholar
  105. 105.
    Gao B, Bataller R. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology. 2011;141:1572–1585.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Barbaro G, Di Lorenzo G, Ribersani M, et al. Serum ferritin and hepatic glutathione concentrations in chronic hepatitis C patients related to the hepatitis C virus genotype. J Hepatol. 1999;30:774–782.PubMedCrossRefGoogle Scholar
  107. 107.
    Petta S, Camma C, Scazzone C, et al. Low vitamin D serum level is related to severe fibrosis and low responsiveness to interferon-based therapy in genotype 1 chronic hepatitis C. Hepatology. 2010;51:1158–1167.PubMedCrossRefGoogle Scholar
  108. 108.
    Farnik H, Bojunga J, Berger A, et al. Low vitamin D serum concentration is associated with high levels of hepatitis B virus replication in chronically infected patients. Hepatology. 2013;58:1270–1276.PubMedCrossRefGoogle Scholar
  109. 109.
    Trepo E, Ouziel R, Pradat P, et al. Marked 25-hydroxyvitamin D deficiency is associated with poor prognosis in patients with alcoholic liver disease. J Hepatol. 2013;59:344–350.PubMedCrossRefGoogle Scholar
  110. 110.
    Smyk DS, Orfanidou T, Invernizzi P, Bogdanos DP, Lenzi M. Vitamin D in autoimmune liver disease. Clin Res Hepatol Gastroenterol. 2013;37:535–545.PubMedCrossRefGoogle Scholar
  111. 111.
    Dasarathy J, Periyalwar P, Allampati S, et al. Hypovitaminosis D is associated with increased whole body fat mass and greater severity of non-alcoholic fatty liver disease. Liver Int. 2014;34:e118–e127.PubMedCrossRefGoogle Scholar
  112. 112.
    Efe C, Kav T, Aydin C, et al. Low serum vitamin D levels are associated with severe histological features and poor response to therapy in patients with autoimmune hepatitis. Dig Dis Sci. 2014;59:3035–3042. doi: 10.1007/s10620-014-3267-3.PubMedCrossRefGoogle Scholar
  113. 113.
    Wong GL, Chan HL, Chan HY, et al. Adverse effects of vitamin D deficiency on outcomes of patients with chronic hepatitis B. Clin Gastroenterol Hepatol. 2015;13:783–790.PubMedCrossRefGoogle Scholar
  114. 114.
    Kumar H, Kim IS, More SV, Kim BW, Choi DK. Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases. Nat Prod Rep. 2014;31:109–139.PubMedCrossRefGoogle Scholar
  115. 115.
    Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci. 2014;39:199–218.PubMedCrossRefGoogle Scholar
  116. 116.
    Gao B, Doan A, Hybertson BM. The clinical potential of influencing Nrf2 signaling in degenerative and immunological disorders. Clin Pharmacol. 2014;6:19–34.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Nguyen T, Sherratt PJ, Pickett CB. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol. 2003;43:233–260.PubMedCrossRefGoogle Scholar
  118. 118.
    Kim J, Cha YN, Surh YJ. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat Res. 2010;690:12–23.PubMedCrossRefGoogle Scholar
  119. 119.
    Pedruzzi LM, Stockler-Pinto MB, Leite M Jr, Mafra D. Nrf2-keap1 system versus NF-kappaB: the good and the evil in chronic kidney disease? Biochimie. 2012;94:2461–2466.PubMedCrossRefGoogle Scholar
  120. 120.
    Buelna-Chontal M, Zazueta C. Redox activation of Nrf2 & NF-kappaB: a double end sword? Cell Signal. 2013;25:2548–2557.PubMedCrossRefGoogle Scholar
  121. 121.
    Artaud-Macari E, Goven D, Brayer S, et al. Nuclear factor erythroid 2-related factor 2 nuclear translocation induces myofibroblastic dedifferentiation in idiopathic pulmonary fibrosis. Antioxid Redox Signal. 2013;18:66–79.PubMedCrossRefGoogle Scholar
  122. 122.
    Oh CJ, Kim JY, Min AK, et al. Sulforaphane attenuates hepatic fibrosis via NF-E2-related factor 2-mediated inhibition of transforming growth factor-beta/Smad signaling. Free Radic Biol Med. 2012;52:671–682.PubMedCrossRefGoogle Scholar
  123. 123.
    Nezis IP, Stenmark H. p62 at the interface of autophagy, oxidative stress signaling, and cancer. Antioxid Redox Signal. 2012;17:786–793.PubMedCrossRefGoogle Scholar
  124. 124.
    Jain A, Lamark T, Sjottem E, et al. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem. 2010;285:22576–22591.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Tong KI, Kobayashi A, Katsuoka F, Yamamoto M. Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism. Biol Chem. 2006;387:1311–1320.PubMedCrossRefGoogle Scholar
  126. 126.
    Itoh K, Chiba T, Takahashi S, et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997;236:313–322.PubMedCrossRefGoogle Scholar
  127. 127.
    Kansanen E, Jyrkkanen HK, Levonen AL. Activation of stress signaling pathways by electrophilic oxidized and nitrated lipids. Free Radic Biol Med. 2012;52:973–982.PubMedCrossRefGoogle Scholar
  128. 128.
    Suzuki T, Motohashi H, Yamamoto M. Toward clinical application of the Keap1-Nrf2 pathway. Trends Pharmacol Sci. 2013;34:340–346.PubMedCrossRefGoogle Scholar
  129. 129.
    Niture SK, Khatri R, Jaiswal AK. Regulation of Nrf2—an update. Free Radic Biol Med. 2014;66:36–44.PubMedCrossRefGoogle Scholar
  130. 130.
    Chowdhry S, Nazmy MH, Meakin PJ, et al. Loss of Nrf2 markedly exacerbates nonalcoholic steatohepatitis. Free Radic Biol Med. 2010;48:357–371.PubMedCrossRefGoogle Scholar
  131. 131.
    Sugimoto H, Okada K, Shoda J, et al. Deletion of nuclear factor-E2-related factor-2 leads to rapid onset and progression of nutritional steatohepatitis in mice. Am J Physiol Gastrointest Liver Physiol. 2010;298:G283–G294.PubMedCrossRefGoogle Scholar
  132. 132.
    Zhang YK, Yeager RL, Tanaka Y, Klaassen CD. Enhanced expression of Nrf2 in mice attenuates the fatty liver produced by a methionine- and choline-deficient diet. Toxicol Appl Pharmacol. 2010;245:326–334.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Shimozono R, Asaoka Y, Yoshizawa Y, et al. Nrf2 activators attenuate the progression of nonalcoholic steatohepatitis-related fibrosis in a dietary rat model. Mol Pharmacol. 2013;84:62–70.PubMedCrossRefGoogle Scholar
  134. 134.
    Jiang T, Tian F, Zheng H, et al. Nrf2 suppresses lupus nephritis through inhibition of oxidative injury and the NF-kappaB-mediated inflammatory response. Kidney Int. 2014;85:333–343.PubMedCrossRefGoogle Scholar
  135. 135.
    Li B, Cui W, Liu J, et al. Sulforaphane ameliorates the development of experimental autoimmune encephalomyelitis by antagonizing oxidative stress and Th17-related inflammation in mice. Exp Neurol. 2013;250:239–249.PubMedCrossRefGoogle Scholar
  136. 136.
    Song BJ, Akbar M, Abdelmegeed MA, et al. Mitochondrial dysfunction and tissue injury by alcohol, high fat, nonalcoholic substances and pathological conditions through post-translational protein modifications. Redox Biol. 2014;3:109–123.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Abdelmegeed MA, Song BJ. Functional roles of protein nitration in acute and chronic liver diseases. Oxid Med Cell Longev. 2014;2014:149627.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Squadrito GL, Pryor WA. Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide. Free Radic Biol Med. 1998;25:392–403.PubMedCrossRefGoogle Scholar
  139. 139.
    Pryor WA, Squadrito GL. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol. 1995;268:L699–L722.PubMedGoogle Scholar
  140. 140.
    Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87:315–424.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Zhang Y, Hogg N. S-Nitrosothiols: cellular formation and transport. Free Radic Biol Med. 2005;38:831–838.PubMedCrossRefGoogle Scholar
  142. 142.
    Nordberg J, Arner ES. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med. 2001;31:1287–1312.PubMedCrossRefGoogle Scholar
  143. 143.
    Mohiuddin I, Chai H, Lin PH, et al. Nitrotyrosine and chlorotyrosine: clinical significance and biological functions in the vascular system. J Surg Res. 2006;133:143–149.PubMedCrossRefGoogle Scholar
  144. 144.
    Albillos A, Rossi I, Cacho G, et al. Enhanced endothelium-dependent vasodilation in patients with cirrhosis. Am J Physiol. 1995;268:G459–G464.PubMedGoogle Scholar
  145. 145.
    Beyazit Y, Efe C, Tanoglu A, et al. Nitric oxide is a potential mediator of hepatic inflammation and fibrogenesis in autoimmune hepatitis. Scand J Gastroenterol. 2015;50:204–210.PubMedCrossRefGoogle Scholar
  146. 146.
    Pacher P, Obrosova IG, Mabley JG, Szabo C. Role of nitrosative stress and peroxynitrite in the pathogenesis of diabetic complications. Emerging new therapeutical strategies. Curr Med Chem. 2005;12:267–275.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Knight TR, Ho YS, Farhood A, Jaeschke H. Peroxynitrite is a critical mediator of acetaminophen hepatotoxicity in murine livers: protection by glutathione. J Pharmacol Exp Ther. 2002;303:468–475.PubMedCrossRefGoogle Scholar
  148. 148.
    Mani AR, Ippolito S, Ollosson R, Moore KP. Nitration of cardiac proteins is associated with abnormal cardiac chronotropic responses in rats with biliary cirrhosis. Hepatology. 2006;43:847–856.PubMedCrossRefGoogle Scholar
  149. 149.
    Arner ES, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem. 2000;267:6102–6109.PubMedCrossRefGoogle Scholar
  150. 150.
    Grattagliano I, Portincasa P, Palmieri VO, Palasciano G. Mutual changes of thioredoxin and nitrosothiols during biliary cirrhosis: results from humans and cholestatic rats. Hepatology. 2007;45:331–339.PubMedCrossRefGoogle Scholar
  151. 151.
    Bertini R, Howard OM, Dong HF, et al. Thioredoxin, a redox enzyme released in infection and inflammation, is a unique chemoattractant for neutrophils, monocytes, and T cells. J Exp Med. 1999;189:1783–1789.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Nakamura H, Nakamura K, Yodoi J. Redox regulation of cellular activation. Annu Rev Immunol. 1997;15:351–369.PubMedCrossRefGoogle Scholar
  153. 153.
    Cebula M, Schmidt EE, Arner ES. TrxR1 as a potent regulator of the Nrf2-Keap1 response system. Antioxid Redox Signal. 2015;23:823–853.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Nikitovic D, Holmgren A. S-nitrosoglutathione is cleaved by the thioredoxin system with liberation of glutathione and redox regulating nitric oxide. J Biol Chem. 1996;271:19180–19185.PubMedCrossRefGoogle Scholar
  155. 155.
    Sumida Y, Nakashima T, Yoh T, et al. Serum thioredoxin levels as a predictor of steatohepatitis in patients with nonalcoholic fatty liver disease. J Hepatol. 2003;38:32–38.PubMedCrossRefGoogle Scholar
  156. 156.
    Zhou J, Eleni C, Spyrou G, Brune B. The mitochondrial thioredoxin system regulates nitric oxide-induced HIF-1alpha protein. Free Radic Biol Med. 2008;44:91–98.PubMedCrossRefGoogle Scholar
  157. 157.
    Damdimopoulos AE, Miranda-Vizuete A, Pelto-Huikko M, Gustafsson JA, Spyrou G. Human mitochondrial thioredoxin. Involvement in mitochondrial membrane potential and cell death. J Biol Chem. 2002;277:33249–33257.PubMedCrossRefGoogle Scholar
  158. 158.
    Hayashi T, Su TP. Sigma-1 receptor chaperones at the ER–mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell. 2007;131:596–610.PubMedCrossRefGoogle Scholar
  159. 159.
    Cullinan SB, Zhang D, Hannink M, et al. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol. 2003;23:7198–7209.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. J Clin Investig. 2005;115:2656–2664.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Gorlach A, Klappa P, Kietzmann T. The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control. Antioxid Redox Signal. 2006;8:1391–1418.PubMedCrossRefGoogle Scholar
  162. 162.
    Maurice T, Su TP. The pharmacology of sigma-1 receptors. Pharmacol Ther. 2009;124:195–206.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Zhang K, Kaufman RJ. From endoplasmic-reticulum stress to the inflammatory response. Nature. 2008;454:455–462.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Lin JH, Walter P, Yen TS. Endoplasmic reticulum stress in disease pathogenesis. Annu Rev Pathol. 2008;3:399–425.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Lozy F, Karantza V. Autophagy and cancer cell metabolism. Semin Cell Dev Biol. 2012;23:395–401.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Madrigal-Matute J, Cuervo AM. Regulation of liver metabolism by autophagy. Gastroenterology. 2016;150:328–339.PubMedCrossRefGoogle Scholar
  167. 167.
    Rabinowitz JD, White E. Autophagy and metabolism. Science. 2010;330:1344–1348.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Mizushima N. Autophagy: process and function. Genes Dev. 2007;21:2861–2873.PubMedCrossRefGoogle Scholar
  169. 169.
    He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet. 2009;43:67–93.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Neufeld TP. TOR-dependent control of autophagy: biting the hand that feeds. Curr Opin Cell Biol. 2010;22:157–168.PubMedCrossRefGoogle Scholar
  171. 171.
    Klionsky DJ, Cregg JM, Dunn WA Jr, et al. A unified nomenclature for yeast autophagy-related genes. Dev Cell. 2003;5:539–545.PubMedCrossRefGoogle Scholar
  172. 172.
    Mizushima N, Klionsky DJ. Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr. 2007;27:19–40.PubMedCrossRefGoogle Scholar
  173. 173.
    Sarkar S, Perlstein EO, Imarisio S, et al. Small molecules enhance autophagy and reduce toxicity in Huntington’s disease models. Nat Chem Biol. 2007;3:331–338.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Zhang L, Yu J, Pan H, et al. Small molecule regulators of autophagy identified by an image-based high-throughput screen. Proc Natl Acad Sci USA. 2007;104:19023–19028.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Hernandez-Gea V, Ghiassi-Nejad Z, Rozenfeld R, et al. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology. 2012;142:938–946.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Hernandez-Gea V, Friedman SL. Autophagy fuels tissue fibrogenesis. Autophagy. 2012;8:849–850.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Amaravadi RK, Yu D, Lum JJ, et al. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Investig. 2007;117:326–336.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Li J, Hou N, Faried A, Tsutsumi S, Kuwano H. Inhibition of autophagy augments 5-fluorouracil chemotherapy in human colon cancer in vitro and in vivo model. Eur J Cancer. 2010;46:1900–1909.PubMedCrossRefGoogle Scholar
  179. 179.
    Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451:1069–1075.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Fox CK, Furtwaengler A, Nepomuceno RR, Martinez OM, Krams SM. Apoptotic pathways in primary biliary cirrhosis and autoimmune hepatitis. Liver. 2001;21:272–279.PubMedCrossRefGoogle Scholar
  181. 181.
    Bai J, Odin JA. Apoptosis and the liver: relation to autoimmunity and related conditions. Autoimmun Rev. 2003;2:36–42.PubMedCrossRefGoogle Scholar
  182. 182.
    Czaja AJ. Targeting apoptosis in autoimmune hepatitis. Dig Dis Sci. 2014;59:2890–2904. doi: 10.1007/s10620-014-3284-2.PubMedCrossRefGoogle Scholar
  183. 183.
    Czaja AJ, Carpenter HA. Progressive fibrosis during corticosteroid therapy of autoimmune hepatitis. Hepatology. 2004;39:1631–1638.PubMedCrossRefGoogle Scholar
  184. 184.
    Moreno-Otero R. May oxidative stress contribute to autoimmune hepatitis pathogenesis, and can antioxidants be of value as adjuvant therapy for refractory patients? Dig Dis Sci. 2013;58:1440–1441. doi: 10.1007/s10620-013-2622-0.PubMedCrossRefGoogle Scholar
  185. 185.
    Czaja AJ. Reply: to Moreno-Otero R. May oxidative stress contribute to autoimune hepatitis pathogenesis, and can antioxidants be of value as adjuvant therapy for refractory patients? Dig Dis Sci. 2013;58:1441–1442. doi: 10.1007/s10620-013-2622-0.PubMedGoogle Scholar
  186. 186.
    Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA. 2007;297:842–857.PubMedCrossRefGoogle Scholar
  187. 187.
    Bjelakovic G, Gluud LL, Nikolova D, et al. Meta-analysis: antioxidant supplements for liver diseases—the Cochrane Hepato-Biliary Group. Aliment Pharmacol Ther. 2010;32:356–367.PubMedCrossRefGoogle Scholar
  188. 188.
    Bjelakovic G, Nikolova D, Gluud C. Antioxidant supplements to prevent mortality. JAMA. 2013;310:1178–1179.PubMedCrossRefGoogle Scholar
  189. 189.
    Bjelakovic G, Nikolova D, Gluud C. Meta-regression analyses, meta-analyses, and trial sequential analyses of the effects of supplementation with beta-carotene, vitamin A, and vitamin E singly or in different combinations on all-cause mortality: do we have evidence for lack of harm? PLoS One. 2013;8:e74558.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Bjelakovic G, Nikolova D, Gluud C. Antioxidant supplements and mortality. Curr Opin Clin Nutr Metab Care. 2014;17:40–44.PubMedGoogle Scholar
  191. 191.
    Harrison SA, Torgerson S, Hayashi P, Ward J, Schenker S. Vitamin E and vitamin C treatment improves fibrosis in patients with nonalcoholic steatohepatitis. Am J Gastroenterol. 2003;98:2485–2490.PubMedCrossRefGoogle Scholar
  192. 192.
    Sanyal AJ, Chalasani N, Kowdley KV, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med. 2010;362:1675–1685.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Ferenci P. Silymarin in the treatment of liver diseases: what is the clinical evidence? Clin Liver Dis. 2016;7:8–10.CrossRefGoogle Scholar
  194. 194.
    Jia JD, Bauer M, Cho JJ, et al. Antifibrotic effect of silymarin in rat secondary biliary fibrosis is mediated by downregulation of procollagen alpha1(I) and TIMP-1. J Hepatol. 2001;35:392–398.PubMedCrossRefGoogle Scholar
  195. 195.
    Boigk G, Stroedter L, Herbst H, et al. Silymarin retards collagen accumulation in early and advanced biliary fibrosis secondary to complete bile duct obliteration in rats. Hepatology. 1997;26:643–649.PubMedCrossRefGoogle Scholar
  196. 196.
    Dehmlow C, Erhard J, de Groot H. Inhibition of Kupffer cell functions as an explanation for the hepatoprotective properties of silibinin. Hepatology. 1996;23:749–754.PubMedCrossRefGoogle Scholar
  197. 197.
    Polyak SJ, Morishima C, Shuhart MC, et al. Inhibition of T-cell inflammatory cytokines, hepatocyte NF-kappaB signaling, and HCV infection by standardized Silymarin. Gastroenterology. 2007;132:1925–1936.PubMedCrossRefGoogle Scholar
  198. 198.
    Polyak SJ, Morishima C, Lohmann V, et al. Identification of hepatoprotective flavonolignans from silymarin. Proc Natl Acad Sci USA. 2010;107:5995–5999.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Ferenci P, Dragosics B, Dittrich H, et al. Randomized controlled trial of silymarin treatment in patients with cirrhosis of the liver. J Hepatol. 1989;9:105–113.PubMedCrossRefGoogle Scholar
  200. 200.
    Loguercio C, Andreone P, Brisc C, et al. Silybin combined with phosphatidylcholine and vitamin E in patients with nonalcoholic fatty liver disease: a randomized controlled trial. Free Radic Biol Med. 2012;52:1658–1665.PubMedCrossRefGoogle Scholar
  201. 201.
    Lucena MI, Andrade RJ, de la Cruz JP, et al. Effects of silymarin MZ-80 on oxidative stress in patients with alcoholic cirrhosis. Results of a randomized, double-blind, placebo-controlled clinical study. Int J Clin Pharmacol Ther. 2002;40:2–8.PubMedCrossRefGoogle Scholar
  202. 202.
    Pares A, Planas R, Torres M, et al. Effects of silymarin in alcoholic patients with cirrhosis of the liver: results of a controlled, double-blind, randomized and multicenter trial. J Hepatol. 1998;28:615–621.PubMedCrossRefGoogle Scholar
  203. 203.
    Ronis MJ, Butura A, Sampey BP, et al. Effects of N-acetylcysteine on ethanol-induced hepatotoxicity in rats fed via total enteral nutrition. Free Radic Biol Med. 2005;39:619–630.PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Baumgardner JN, Shankar K, Hennings L, et al. N-acetylcysteine attenuates progression of liver pathology in a rat model of nonalcoholic steatohepatitis. J Nutr. 2008;138:1872–1879.PubMedPubMedCentralGoogle Scholar
  205. 205.
    Keays R, Harrison PM, Wendon JA, et al. Intravenous acetylcysteine in paracetamol induced fulminant hepatic failure: a prospective controlled trial. BMJ. 1991;303:1026–1029.PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Phillips M, Curtis H, Portmann B, et al. Antioxidants versus corticosteroids in the treatment of severe alcoholic hepatitis—a randomised clinical trial. J Hepatol. 2006;44:784–790.PubMedCrossRefGoogle Scholar
  207. 207.
    Stewart S, Prince M, Bassendine M, et al. A randomized trial of antioxidant therapy alone or with corticosteroids in acute alcoholic hepatitis. J Hepatol. 2007;47:277–283.PubMedCrossRefGoogle Scholar
  208. 208.
    Turunen M, Olsson J, Dallner G. Metabolism and function of coenzyme Q. Biochim Biophys Acta. 2004;1660:171–199.PubMedCrossRefGoogle Scholar
  209. 209.
    Tarry-Adkins JL, Fernandez-Twinn DS, Hargreaves IP, et al. Coenzyme Q10 prevents hepatic fibrosis, inflammation, and oxidative stress in a male rat model of poor maternal nutrition and accelerated postnatal growth. Am J Clin Nutr. 2016;103:579–588.CrossRefGoogle Scholar
  210. 210.
    Choi HK, Pokharel YR, Lim SC, et al. Inhibition of liver fibrosis by solubilized coenzyme Q10: role of Nrf2 activation in inhibiting transforming growth factor-beta1 expression. Toxicol Appl Pharmacol. 2009;240:377–384.PubMedCrossRefGoogle Scholar
  211. 211.
    Lonnrot K, Holm P, Lagerstedt A, Huhtala H, Alho H. The effects of lifelong ubiquinone Q10 supplementation on the Q9 and Q10 tissue concentrations and life span of male rats and mice. Biochem Mol Biol Int. 1998;44:727–737.PubMedGoogle Scholar
  212. 212.
    Sohet FM, Neyrinck AM, Pachikian BD, et al. Coenzyme Q10 supplementation lowers hepatic oxidative stress and inflammation associated with diet-induced obesity in mice. Biochem Pharmacol. 2009;78:1391–1400.PubMedCrossRefGoogle Scholar
  213. 213.
    Farhangi MA, Alipour B, Jafarvand E, Khoshbaten M. Oral coenzyme Q10 supplementation in patients with nonalcoholic fatty liver disease: effects on serum vaspin, chemerin, pentraxin 3, insulin resistance and oxidative stress. Arch Med Res. 2014;45:589–595.PubMedCrossRefGoogle Scholar
  214. 214.
    Sanoobar M, Eghtesadi S, Azimi A, et al. Coenzyme Q10 supplementation ameliorates inflammatory markers in patients with multiple sclerosis: a double blind, placebo, controlled randomized clinical trial. Nutr Neurosci. 2015;18:169–176.PubMedCrossRefGoogle Scholar
  215. 215.
    Derynck R, Zhang Y, Feng XH. Smads: transcriptional activators of TGF-beta responses. Cell. 1998;95:737–740.PubMedCrossRefGoogle Scholar
  216. 216.
    Massague J, Seoane J, Wotton D. Smad transcription factors. Genes Dev. 2005;19:2783–2810.PubMedCrossRefGoogle Scholar
  217. 217.
    Heldin CH, Miyazono K, ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 1997;390:465–471.PubMedCrossRefGoogle Scholar
  218. 218.
    Laping NJ, Grygielko E, Mathur A, et al. Inhibition of transforming growth factor (TGF)-beta1-induced extracellular matrix with a novel inhibitor of the TGF-beta type I receptor kinase activity: SB-431542. Mol Pharmacol. 2002;62:58–64.PubMedCrossRefGoogle Scholar
  219. 219.
    Stuehr DJ. Mammalian nitric oxide synthases. Biochim Biophys Acta. 1999;1411:217–230.PubMedCrossRefGoogle Scholar
  220. 220.
    Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J. 2001;357:593–615.PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Weinberg JB, Chen Y, Jiang N, et al. Inhibition of nitric oxide synthase by cobalamins and cobinamides. Free Radic Biol Med. 2009;46:1626–1632.PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Vitecek J, Lojek A, Valacchi G, Kubala L. Arginine-based inhibitors of nitric oxide synthase: therapeutic potential and challenges. Mediat Inflamm. 2012;2012:318087.CrossRefGoogle Scholar
  223. 223.
    Pfeiffer S, Leopold E, Schmidt K, Brunner F, Mayer B. Inhibition of nitric oxide synthesis by NG-nitro-l-arginine methyl ester (l-NAME): requirement for bioactivation to the free acid, NG-nitro-l-arginine. Br J Pharmacol. 1996;118:1433–1440.PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Babu BR, Griffith OW. Design of isoform-selective inhibitors of nitric oxide synthase. Curr Opin Chem Biol. 1998;2:491–500.PubMedCrossRefGoogle Scholar
  225. 225.
    Tinker AC, Wallace AV. Selective inhibitors of inducible nitric oxide synthase: potential agents for the treatment of inflammatory diseases? Curr Top Med Chem. 2006;6:77–92.PubMedCrossRefGoogle Scholar
  226. 226.
    Garcin ED, Arvai AS, Rosenfeld RJ, et al. Anchored plasticity opens doors for selective inhibitor design in nitric oxide synthase. Nat Chem Biol. 2008;4:700–707.PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Ji H, Li H, Martasek P, et al. Discovery of highly potent and selective inhibitors of neuronal nitric oxide synthase by fragment hopping. J Med Chem. 2009;52:779–797.PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Iida K, Itoh K, Kumagai Y, et al. Nrf2 is essential for the chemopreventive efficacy of oltipraz against urinary bladder carcinogenesis. Cancer Res. 2004;64:6424–6431.PubMedCrossRefGoogle Scholar
  229. 229.
    Brooks SC 3rd, Brooks JS, Lee WH, Lee MG, Kim SG. Therapeutic potential of dithiolethiones for hepatic diseases. Pharmacol Ther. 2009;124:31–43.PubMedCrossRefGoogle Scholar
  230. 230.
    Kang KW, Kim YG, Cho MK, et al. Oltipraz regenerates cirrhotic liver through CCAAT/enhancer binding protein-mediated stellate cell inactivation. FASEB J. 2002;16:1988–1990.PubMedGoogle Scholar
  231. 231.
    Velayutham M, Villamena FA, Fishbein JC, Zweier JL. Cancer chemopreventive oltipraz generates superoxide anion radical. Arch Biochem Biophys. 2005;435:83–88.PubMedCrossRefGoogle Scholar
  232. 232.
    Manns MP, Czaja AJ, Gorham JD, et al. Diagnosis and management of autoimmune hepatitis. Hepatology. 2010;51:2193–2213.PubMedCrossRefGoogle Scholar
  233. 233.
    Czaja AJ. Review article: prevention and reversal of hepatic fibrosis in autoimmune hepatitis. Aliment Pharmacol Ther. 2014;39:385–406.PubMedCrossRefGoogle Scholar
  234. 234.
    Czock D, Keller F, Rasche FM, Haussler U. Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin Pharmacokinet. 2005;44:61–98.PubMedCrossRefGoogle Scholar
  235. 235.
    Meunier B, de Visser SP, Shaik S. Mechanism of oxidation reactions catalyzed by cytochrome p450 enzymes. Chem Rev. 2004;104:3947–3980.PubMedCrossRefGoogle Scholar
  236. 236.
    Danielson PB. The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr Drug Metab. 2002;3:561–597.PubMedCrossRefGoogle Scholar
  237. 237.
    Okuyama H, Nakamura H, Shimahara Y, et al. Overexpression of thioredoxin prevents thioacetamide-induced hepatic fibrosis in mice. J Hepatol. 2005;42:117–123.PubMedCrossRefGoogle Scholar
  238. 238.
    Rigobello MP, Callegaro MT, Barzon E, Benetti M, Bindoli A. Purification of mitochondrial thioredoxin reductase and its involvement in the redox regulation of membrane permeability. Free Radic Biol Med. 1998;24:370–376.PubMedCrossRefGoogle Scholar
  239. 239.
    Hitomi J, Katayama T, Eguchi Y, et al. Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. J Cell Biol. 2004;165:347–356.PubMedPubMedCentralCrossRefGoogle Scholar
  240. 240.
    Lee J, Giordano S, Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J. 2012;441:523–540.PubMedCrossRefGoogle Scholar
  241. 241.
    Hoyer-Hansen M, Jaattela M. Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ. 2007;14:1576–1582.PubMedCrossRefGoogle Scholar
  242. 242.
    Ding WX, Ni HM, Gao W, et al. Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J Biol Chem. 2007;282:4702–4710.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Professor Emeritus of Medicine, Division of Gastroenterology and HepatologyMayo Clinic College of MedicineRochesterUSA

Personalised recommendations