Festi D, Schiumerini R, Eusebi LH, Marasco G, Taddia M, Colecchia A. Gut microbiota and metabolic syndrome. World J Gastroenterol. 2014;20:16079–16094.
PubMed
PubMed Central
Article
Google Scholar
Collado MC, Calabuig M, Sanz Y. Differences between the fecal microbiota of coeliac infants and healthy controls. Curr Issues Intest Microbiol. 2007;8:9–14.
CAS
PubMed
Google Scholar
Szebeni B, Veres G, Dezsofi A, et al. Increased mucosal expression of Toll-like receptor (TLR)2 and TLR4 in coeliac disease. J Pediatr Gastroenterol Nutr. 2007;45:187–193.
CAS
PubMed
Article
Google Scholar
Husby S, Koletzko S, Korponay-Szabó IR, et al. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition guidelines for the diagnosis of coeliac disease. J Pediatr Gastroenterol Nutr. 2012;54:136–160.
CAS
PubMed
Article
Google Scholar
Rubio-Tapia A, Hill ID, Kelly CP, Calderwood AH, Murray JA. ACG clinical guidelines: diagnosis and management of celiac disease. Am J Gastroenterol. 2013;108:656–676. (quiz 677).
CAS
PubMed
PubMed Central
Article
Google Scholar
Fasano A, Catassi C. Clinical practice. Celiac disease. N Engl J Med. 2012;367:2419–2426.
CAS
PubMed
Article
Google Scholar
Guandalini S, Assiri A. Celiac disease: a review. JAMA Pediatr. 2014;168:272–278.
PubMed
Article
Google Scholar
Harris LA, Park JY, Voltaggio L, Lam-Himlin D. Celiac disease: clinical, endoscopic, and histopathologic review. Gastrointest Endosc. 2012;76:625–640.
PubMed
Article
Google Scholar
Schuppan D, Junker Y, Barisani D. Celiac disease: from pathogenesis to novel therapies. Gastroenterology. 2009;137:1912–1933.
CAS
PubMed
Article
Google Scholar
Abadie V, Sollid LM, Barreiro LB, Jabri B. Integration of genetic and immunological insights into a model of celiac disease pathogenesis. Annu Rev Immunol. 2011;29:493–525.
CAS
PubMed
Article
Google Scholar
Pender SL, Tickle SP, Docherty AJ, Howie D, Wathen NC, MacDonald TT. A major role for matrix metalloproteinases in T cell injury in the gut. J Immunol. 1997;158:1582–1590.
CAS
PubMed
Google Scholar
Daum S, Bauer U, Foss HD, et al. Increased expression of mRNA for matrix metalloproteinases-1 and -3 and tissue inhibitor of metalloproteinases-1 in intestinal biopsy specimens from patients with coeliac disease. Gut. 1999;44:17–25.
CAS
PubMed
PubMed Central
Article
Google Scholar
Ciccocioppo R, Di Sabatino A, Bauer M, et al. Matrix metalloproteinase pattern in celiac duodenal mucosa. Lab Invest. 2005;85:397–407.
CAS
PubMed
Article
Google Scholar
Green PHR, Jabri B. Coeliac disease. Lancet. 2003;362:383–391.
CAS
PubMed
Article
Google Scholar
Maiuri L, Ciacci C, Ricciardelli I, et al. Association between innate response to gliadin and activation of pathogenic T cells in coeliac disease. Lancet. 2003;362:30–37.
CAS
PubMed
Article
Google Scholar
Londei M, Ciacci C, Ricciardelli I, Vacca L, Quaratino S, Maiuri L. Gliadin as a stimulator of innate responses in celiac disease. Mol Immunol. 2005;42:913–918.
CAS
PubMed
Article
Google Scholar
Lammers KM, Lu R, Brownley J, et al. Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology. 2008;135:e3.
PubMed
Google Scholar
Thomas KE, Sapone A, Fasano A, Vogel SN. Gliadin stimulation of murine macrophage inflammatory gene expression and intestinal permeability are MyD88-dependent: role of the innate immune response in Celiac disease. J Immunol. 2006;176:2512–2521.
CAS
PubMed
Article
Google Scholar
Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9:313–323.
CAS
PubMed
PubMed Central
Article
Google Scholar
Meresse B, Cerf-Bensussan N. Innate T cell responses in human gut. Semin Immunol. 2009;21:121–129.
CAS
PubMed
Article
Google Scholar
Palmer E. The generation of T cell tolerance. Swiss Med Wkly. 2007;137:99S–100S.
PubMed
Google Scholar
Sharma R, Young C, Neu J. Molecular modulation of intestinal epithelial barrier: contribution of microbiota. J Biomed Biotechnol. 2010;2010:305879.
PubMed
PubMed Central
Google Scholar
Nagler-Anderson C. Man the barrier! Strategic defences in the intestinal mucosa. Nat Rev Immunol. 2001;1:59–67.
CAS
PubMed
Article
Google Scholar
Ashida H, Ogawa M, Kim M, Mimuro H, Sasakawa C. Bacteria and host interactions in the gut epithelial barrier. Nat Chem Biol. 2012;8:36–45.
CAS
Article
Google Scholar
Stappenbeck TS, Hooper LV, Gordon JI. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci USA. 2002;99:15451–15455.
CAS
PubMed
PubMed Central
Article
Google Scholar
Pace NR. A molecular view of microbial diversity and the biosphere. Science. 1997;276:734–740.
CAS
PubMed
Article
Google Scholar
Rondon MR, August PR, Bettermann AD, et al. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol. 2000;66:2541–2547.
CAS
PubMed
PubMed Central
Article
Google Scholar
Hamady M, Knight R. Microbial community profiling for human microbiome projects: tools, techniques, and challenges. Genome Res. 2009;19:1141–1152.
CAS
PubMed
PubMed Central
Article
Google Scholar
Greco L, Romino R, Coto I, et al. The first large population based twin study of coeliac disease. Gut. 2002;50:624–628.
CAS
PubMed
PubMed Central
Article
Google Scholar
Ivarsson A, Myléus A, Norström F, et al. Prevalence of childhood celiac disease and changes in infant feeding. Pediatrics. 2013;131:e687–e694.
PubMed
Article
Google Scholar
Norris JM, Barriga K, Hoffenberg EJ, et al. Risk of celiac disease autoimmunity and timing of gluten introduction in the diet of infants at increased risk of disease. JAMA. 2005;293:2343–2351.
CAS
PubMed
Article
Google Scholar
Lionetti E, Castellaneta S, Francavilla R, et al. Introduction of gluten, HLA status, and the risk of celiac disease in children. N Engl J Med. 2014;371:1295–1303.
PubMed
Article
CAS
Google Scholar
Vriezinga SL, Auricchio R, Bravi E, et al. Randomized feeding intervention in infants at high risk for celiac disease. N Engl J Med. 2014;371:1304–1315.
CAS
PubMed
Article
Google Scholar
Myléus A, Hernell O, Gothefors L, et al. Early infections are associated with increased risk for celiac disease: an incident case-referent study. BMC Pediatr. 2012;12:194.
PubMed
PubMed Central
Article
Google Scholar
Collado MC, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Specific duodenal and faecal bacterial groups associated with paediatric coeliac disease. J Clin Pathol. 2009;62:264–269.
CAS
PubMed
Article
Google Scholar
De Palma G, Nadal I, Medina M, et al. Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children. BMC Microbiol. 2010;10:63.
PubMed
PubMed Central
Article
CAS
Google Scholar
Stene LC, Honeyman MC, Hoffenberg EJ, et al. Rotavirus infection frequency and risk of celiac disease autoimmunity in early childhood: a longitudinal study. Am J Gastroenterol. 2006;101:2333–2340.
CAS
PubMed
Article
Google Scholar
Pavone P, Nicolini E, Taibi R, Ruggieri M. Rotavirus and celiac disease. Am J Gastroenterol. 1831;2007:102.
Google Scholar
Decker E, Engelmann G, Findeisen A, et al. Cesarean delivery is associated with celiac disease but not inflammatory bowel disease in children. Pediatrics. 2010;125:e1433–e1440.
PubMed
Article
Google Scholar
Mårild K, Stephansson O, Montgomery S, Murray JA, Ludvigsson JF. Pregnancy outcome and risk of celiac disease in offspring: a nationwide case-control study. Gastroenterology. 2012;142:e3.
PubMed
Article
Google Scholar
Lasa J, Zubiaurre I, Dima G, Peralta D, Soifer L. Helicobacter pylori prevalence in patients with celiac disease: results from a cross-sectional study. Arq Gastroenterol. 2015;52:139–142.
PubMed
Article
Google Scholar
Lebwohl B, Blaser MJ, Ludvigsson JF, et al. Decreased risk of celiac disease in patients with Helicobacter pylori colonization. Am J Epidemiol. 2013;178:1721–1730.
PubMed
PubMed Central
Article
Google Scholar
Simondi D, Ribaldone DG, Bonagura GA, et al. Helicobacter pylori in celiac disease and in duodenal intraepithelial lymphocytosis: active protagonist or innocent bystander? Clin Res Hepatol Gastroenterol. 2015;39:740–745.
PubMed
Article
Google Scholar
Jozefczuk J, Bancerz B, Walkowiak M, et al. Prevalence of Helicobacter pylori infection in pediatric celiac disease. Eur Rev Med Pharmacol Sci. 2015;19:2031–2035.
CAS
PubMed
Google Scholar
Cinova J, De Palma G, Stepankova R, et al. Role of intestinal bacteria in gliadin-induced changes in intestinal mucosa: study in germ-free rats. PLoS One. 2011;6:e16169.
CAS
PubMed
PubMed Central
Article
Google Scholar
Laparra JM, Olivares M, Gallina O, Sanz Y. Bifidobacterium longum CECT 7347 modulates immune responses in a gliadin-induced enteropathy animal model. PLoS One. 2012;7:e30744.
CAS
PubMed
PubMed Central
Article
Google Scholar
Papista C, Gerakopoulos V, Kourelis A, et al. Gluten induces coeliac-like disease in sensitised mice involving IgA, CD71 and transglutaminase 2 interactions that are prevented by probiotics. Lab Invest. 2012;92:625–635.
CAS
PubMed
Article
Google Scholar
D’Arienzo R, Stefanile R, Maurano F, et al. Immunomodulatory effects of Lactobacillus casei administration in a mouse model of gliadin-sensitive enteropathy. Scand J Immunol. 2011;74:335–341.
PubMed
Article
CAS
Google Scholar
Sanz Y, Sánchez E, Marzotto M, Calabuig M, Torriani S, Dellaglio F. Differences in faecal bacterial communities in coeliac and healthy children as detected by PCR and denaturing gradient gel electrophoresis. FEMS Immunol Med Microbiol. 2007;51:562–568.
CAS
PubMed
Article
Google Scholar
Nistal E, Caminero A, Vivas S, et al. Differences in faecal bacteria populations and faecal bacteria metabolism in healthy adults and celiac disease patients. Biochimie. 2012;94:1724–1729.
CAS
PubMed
Article
Google Scholar
Tjellström B, Stenhammar L, Högberg L, et al. Gut microflora associated characteristics in children with celiac disease. Am J Gastroenterol. 2005;100:2784–2788.
PubMed
Article
Google Scholar
Sánchez E, Ribes-Koninckx C, Calabuig M, Sanz Y. Intestinal Staphylococcus spp. and virulent features associated with coeliac disease. J Clin Pathol. 2012;65:830–834.
PubMed
Article
CAS
Google Scholar
Chiba M, Hoshina S, Kono M, et al. Staphylococcus aureus in inflammatory bowel disease. Scand J Gastroenterol. 2001;36:615–620.
CAS
PubMed
Article
Google Scholar
Nguyen GC, Patel H, Chong RY. Increased prevalence of and associated mortality with methicillin-resistant Staphylococcus aureus among hospitalized IBD patients. Am J Gastroenterol. 2010;105:371–377.
PubMed
Article
Google Scholar
Ong PY, Patel M, Ferdman RM, Dunaway T, Church JA. Association of staphylococcal superantigen-specific immunoglobulin e with mild and moderate atopic dermatitis. J Pediatr. 2008;153:803–806.
CAS
PubMed
PubMed Central
Article
Google Scholar
Garza-González E, Morfín-Otero R, Llaca-Díaz JM, Rodriguez-Noriega E. Staphylococcal cassette chromosome mec (SCC mec) in methicillin-resistant coagulase-negative staphylococci. A review and the experience in a tertiary-care setting. Epidemiol Infect. 2010;138:645–654.
PubMed
Article
Google Scholar
Olivares M, Neef A, Castillejo G, et al. The HLA-DQ2 genotype selects for early intestinal microbiota composition in infants at high risk of developing coeliac disease. Gut. 2015;64:406–417.
CAS
PubMed
Article
Google Scholar
Nadal I, Donat E, Donant E, Ribes-Koninckx C, Calabuig M, Sanz Y. Imbalance in the composition of the duodenal microbiota of children with coeliac disease. J Med Microbiol. 2007;56:1669–1674.
CAS
PubMed
Article
Google Scholar
Sánchez E, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Intestinal Bacteroides species associated with coeliac disease. J Clin Pathol. 2010;63:1105–1111.
PubMed
Article
CAS
Google Scholar
Nistal E, Caminero A, Herrán AR, et al. Differences of small intestinal bacteria populations in adults and children with/without celiac disease: effect of age, gluten diet, and disease. Inflamm Bowel Dis. 2012;18:649–656.
PubMed
Article
Google Scholar
Sánchez E, Donat E, Ribes-Koninckx C, Fernández-Murga ML, Sanz Y. Duodenal-mucosal bacteria associated with celiac disease in children. Appl Environ Microbiol. 2013;79:5472–5479.
PubMed
PubMed Central
Article
Google Scholar
Ou G, Hedberg M, Hörstedt P, et al. Proximal small intestinal microbiota and identification of rod-shaped bacteria associated with childhood celiac disease. Am J Gastroenterol. 2009;104:3058–3067.
PubMed
Article
Google Scholar
Forsberg G, Fahlgren A, Hörstedt P, Hammarström S, Hernell O, Hammarström M-L. Presence of bacteria and innate immunity of intestinal epithelium in childhood celiac disease. Am J Gastroenterol. 2004;99:894–904.
PubMed
Article
Google Scholar
Wacklin P, Kaukinen K, Tuovinen E, et al. The duodenal microbiota composition of adult celiac disease patients is associated with the clinical manifestation of the disease. Inflamm Bowel Dis. 2013;19:934–941.
PubMed
Article
Google Scholar
Kalliomäki M, Satokari R, Lähteenoja H, et al. Expression of microbiota, Toll-like receptors, and their regulators in the small intestinal mucosa in celiac disease. J Pediatr Gastroenterol Nutr. 2012;54:727–732.
PubMed
Article
CAS
Google Scholar
Maynard CL, Elson CO, Hatton RD, Weaver CT. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012;489:231–241.
CAS
PubMed
PubMed Central
Article
Google Scholar
Abreu MT. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol. 2010;10:131–144.
CAS
PubMed
Article
Google Scholar
Collado MC, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Imbalances in faecal and duodenal Bifidobacterium species composition in active and non-active coeliac disease. BMC Microbiol. 2008;8:232.
PubMed
PubMed Central
Article
Google Scholar
Di Cagno R, De Angelis M, De Pasquale I, et al. Duodenal and faecal microbiota of celiac children: molecular, phenotype and metabolome characterization. BMC Microbiol. 2011;11:219.
PubMed
PubMed Central
Article
CAS
Google Scholar
Golfetto L, de Senna FD, Hermes J, Beserra BTS, França FDS, Martinello F. Lower bifidobacteria counts in adult patients with celiac disease on a gluten-free diet. Arq Gastroenterol. 2014;51:139–143.
PubMed
Article
Google Scholar
De Meij TGJ, Budding AE, Grasman ME, Kneepkens CMF, Savelkoul PHM, Mearin ML. Composition and diversity of the duodenal mucosa-associated microbiome in children with untreated coeliac disease. Scand J Gastroenterol. 2013;48:530–536.
PubMed
Article
Google Scholar
De Palma G, Nadal I, Collado MC, Sanz Y. Effects of a gluten-free diet on gut microbiota and immune function in healthy adult human subjects. Br J Nutr. 2009;102:1154–1160.
PubMed
Article
CAS
Google Scholar
Jackson FW. Effects of a gluten-free diet on gut microbiota and immune function in healthy adult human subjects—comment by Jackson. Br J Nutr. 2010;104:773.
CAS
PubMed
Article
Google Scholar
Moshfegh AJ, Friday JE, Goldman JP, Ahuja JK. Presence of inulin and oligofructose in the diets of Americans. J Nutr. 1999;129:1407S–1411S.
CAS
PubMed
Google Scholar
Van Loo J, Coussement P, de Leenheer L, Hoebregs H, Smits G. On the presence of inulin and oligofructose as natural ingredients in the western diet. Crit Rev Food Sci Nutr. 1995;35:525–552.
PubMed
Article
Google Scholar
Di Cagno R, Rizzello CG, Gagliardi F, et al. Different fecal microbiotas and volatile organic compounds in treated and untreated children with celiac disease. Appl Environ Microbiol. 2009;75:3963–3971.
PubMed
PubMed Central
Article
CAS
Google Scholar
Schippa S, Iebba V, Barbato M, et al. A distinctive “microbial signature” in celiac pediatric patients. BMC Microbiol. 2010;10:175.
PubMed
PubMed Central
Article
CAS
Google Scholar
Wacklin P, Laurikka P, Lindfors K, et al. Altered duodenal microbiota composition in celiac disease patients suffering from persistent symptoms on a long-term gluten-free diet. Am J Gastroenterol. 2014;109:1933–1941.
CAS
PubMed
Article
Google Scholar
Marasco G, Colecchia A, Festi D. Dysbiosis in Celiac disease patients with persistent symptoms on gluten-free diet: a condition similar to that present in irritable bowel syndrome patients? Am J Gastroenterol. 2015;110:598.
PubMed
Article
Google Scholar
Roma E, Roubani A, Kolia E, Panayiotou J, Zellos A, Syriopoulou VP. Dietary compliance and life style of children with coeliac disease. J Hum Nutr Diet. 2010;23:176–182.
CAS
PubMed
Article
Google Scholar
Sonti R, Green PHR. Celiac disease: obesity in celiac disease. Nat Rev Gastroenterol Hepatol. 2012;9:247–248.
PubMed
Article
Google Scholar
Kabbani TA, Goldberg A, Kelly CP, et al. Body mass index and the risk of obesity in coeliac disease treated with the gluten-free diet. Aliment Pharmacol Ther. 2012;35:723–729.
CAS
PubMed
Article
Google Scholar
Mariani P, Viti MG, Montuori M, et al. The gluten-free diet: a nutritional risk factor for adolescents with celiac disease? J Pediatr Gastroenterol Nutr. 1998;27:519–523.
CAS
PubMed
Article
Google Scholar
Scaramuzza AE, Mantegazza C, Bosetti A, Zuccotti GV. Type 1 diabetes and celiac disease: the effects of gluten free diet on metabolic control. World J Diabetes. 2013;4:130–134.
PubMed
PubMed Central
Article
Google Scholar
Kaukinen K, Lindfors K, Mäki M. Advances in the treatment of coeliac disease: an immunopathogenic perspective. Nat Rev Gastroenterol Hepatol. 2014;11:36–44.
CAS
PubMed
Article
Google Scholar
Vanderpool C, Yan F, Polk DB. Mechanisms of probiotic action: implications for therapeutic applications in inflammatory bowel diseases. Inflamm Bowel Dis. 2008;14:1585–1596.
PubMed
Article
Google Scholar
Zeng J, Li Y-Q, Zuo X-L, Zhen Y-B, Yang J, Liu C-H. Clinical trial: effect of active lactic acid bacteria on mucosal barrier function in patients with diarrhoea-predominant irritable bowel syndrome. Aliment Pharmacol Ther. 2008;28:994–1002.
CAS
PubMed
Article
Google Scholar
Seth A, Yan F, Polk DB, Rao RK. Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC- and MAP kinase-dependent mechanism. Am J Physiol Gastrointest Liver Physiol. 2008;294:G1060–G1069.
CAS
PubMed
PubMed Central
Article
Google Scholar
Lindfors K, Blomqvist T, Juuti-Uusitalo K, et al. Live probiotic Bifidobacterium lactis bacteria inhibit the toxic effects induced by wheat gliadin in epithelial cell culture. Clin Exp Immunol. 2008;152:552–558.
CAS
PubMed
PubMed Central
Article
Google Scholar
Medina M, Izquierdo E, Ennahar S, Sanz Y. Differential immunomodulatory properties of Bifidobacterium logum strains: relevance to probiotic selection and clinical applications. Clin Exp Immunol. 2007;150:531–538.
CAS
PubMed
PubMed Central
Article
Google Scholar
Baba N, Samson S, Bourdet-Sicard R, Rubio M, Sarfati M. Commensal bacteria trigger a full dendritic cell maturation program that promotes the expansion of non-Tr1 suppressor T cells. J Leukoc Biol. 2008;84:468–476.
CAS
PubMed
Article
Google Scholar
Medina M, De Palma G, Ribes-Koninckx C, Calabuig M, Sanz Y. Bifidobacterium strains suppress in vitro the pro-inflammatory milieu triggered by the large intestinal microbiota of coeliac patients. J Inflamm (Lond). 2008;5:19.
Article
CAS
Google Scholar
Laparra JM, Sanz Y. Bifidobacteria inhibit the inflammatory response induced by gliadins in intestinal epithelial cells via modifications of toxic peptide generation during digestion. J Cell Biochem. 2010;109:801–807.
CAS
PubMed
Google Scholar
Laparra JM, Olivares M, Sanz Y. Oral administration of Bifidobacterium longum CECT 7347 ameliorates gliadin-induced alterations in liver iron mobilisation. Br J Nutr. 2013;110:1828–1836.
CAS
PubMed
Article
Google Scholar
De Palma G, Cinova J, Stepankova R, Tuckova L, Sanz Y. Pivotal advance: bifidobacteria and gram-negative bacteria differentially influence immune responses in the proinflammatory milieu of celiac disease. J Leukoc Biol. 2010;87:765–778.
PubMed
Article
CAS
Google Scholar
D’Arienzo R, Maurano F, Lavermicocca P, Ricca E, Rossi M. Modulation of the immune response by probiotic strains in a mouse model of gluten sensitivity. Cytokine. 2009;48:254–259.
PubMed
Article
CAS
Google Scholar
De Angelis M, Rizzello CG, Fasano A, et al. VSL#3 probiotic preparation has the capacity to hydrolyze gliadin polypeptides responsible for Celiac Sprue. Biochim Biophys Acta. 2006;1762:80–93.
PubMed
Article
CAS
Google Scholar
Smecuol E, Hwang HJ, Sugai E, Corso L, et al. Exploratory, randomized, double-blind, placebo-controlled study on the effects of Bifidobacterium infantis natren life start strain super strain in active celiac disease. J Clin Gastroenterol. 2013;47:139–147.
PubMed
Article
Google Scholar
Olivares M, Castillejo G, Varea V, Sanz Y. Double-blind, randomised, placebo-controlled intervention trial to evaluate the effects of Bifidobacterium longum CECT 7347 in children with newly diagnosed coeliac disease. Br J Nutr. 2014;112:30–40.
CAS
PubMed
Article
Google Scholar
Lorenzo Pisarello MJ, Vintiñi EO, González SN, Pagani F, Medina MS. Decrease in lactobacilli in the intestinal microbiota of celiac children with a gluten-free diet, and selection of potentially probiotic strains. Can J Microbiol. 2015;61:32–37.
CAS
PubMed
Article
Google Scholar
Capriles VD, Arêas JAG. Effects of prebiotic inulin-type fructans on structure, quality, sensory acceptance and glycemic response of gluten-free breads. Food Funct. 2013;4:104–110.
CAS
PubMed
Article
Google Scholar
Cheng J, Kalliomäki M, Heilig HGHJ, et al. Duodenal microbiota composition and mucosal homeostasis in pediatric celiac disease. BMC Gastroenterol. 2013;13:113.
CAS
PubMed
PubMed Central
Article
Google Scholar