Digestive Diseases and Sciences

, Volume 61, Issue 6, pp 1461–1472 | Cite as

Gut Microbiota and Celiac Disease

  • Giovanni MarascoEmail author
  • Anna Rita Di Biase
  • Ramona Schiumerini
  • Leonardo Henry Eusebi
  • Lorenzo Iughetti
  • Federico Ravaioli
  • Eleonora Scaioli
  • Antonio Colecchia
  • Davide Festi


Recent evidence regarding celiac disease has increasingly shown the role of innate immunity in triggering the immune response by stimulating the adaptive immune response and by mucosal damage. The interaction between the gut microbiota and the mucosal wall is mediated by the same receptors which can activate innate immunity. Thus, changes in gut microbiota may lead to activation of this inflammatory pathway. This paper is a review of the current knowledge regarding the relationship between celiac disease and gut microbiota. In fact, patients with celiac disease have a reduction in beneficial species and an increase in those potentially pathogenic as compared to healthy subjects. This dysbiosis is reduced, but might still remain, after a gluten-free diet. Thus, gut microbiota could play a significant role in the pathogenesis of celiac disease, as described by studies which link dysbiosis with the inflammatory milieu in celiac patients. The use of probiotics seems to reduce the inflammatory response and restore a normal proportion of beneficial bacteria in the gastrointestinal tract. Additional evidence is needed in order to better understand the role of gut microbiota in the pathogenesis of celiac disease, and the clinical impact and therapeutic use of probiotics in this setting.


Celiac disease Gut microbiota Dysbiosis Probiotic Gluten-free diet 


Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Festi D, Schiumerini R, Eusebi LH, Marasco G, Taddia M, Colecchia A. Gut microbiota and metabolic syndrome. World J Gastroenterol. 2014;20:16079–16094.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Collado MC, Calabuig M, Sanz Y. Differences between the fecal microbiota of coeliac infants and healthy controls. Curr Issues Intest Microbiol. 2007;8:9–14.PubMedGoogle Scholar
  3. 3.
    Szebeni B, Veres G, Dezsofi A, et al. Increased mucosal expression of Toll-like receptor (TLR)2 and TLR4 in coeliac disease. J Pediatr Gastroenterol Nutr. 2007;45:187–193.PubMedCrossRefGoogle Scholar
  4. 4.
    Husby S, Koletzko S, Korponay-Szabó IR, et al. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition guidelines for the diagnosis of coeliac disease. J Pediatr Gastroenterol Nutr. 2012;54:136–160.PubMedCrossRefGoogle Scholar
  5. 5.
    Rubio-Tapia A, Hill ID, Kelly CP, Calderwood AH, Murray JA. ACG clinical guidelines: diagnosis and management of celiac disease. Am J Gastroenterol. 2013;108:656–676. (quiz 677).PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Fasano A, Catassi C. Clinical practice. Celiac disease. N Engl J Med. 2012;367:2419–2426.PubMedCrossRefGoogle Scholar
  7. 7.
    Guandalini S, Assiri A. Celiac disease: a review. JAMA Pediatr. 2014;168:272–278.PubMedCrossRefGoogle Scholar
  8. 8.
    Harris LA, Park JY, Voltaggio L, Lam-Himlin D. Celiac disease: clinical, endoscopic, and histopathologic review. Gastrointest Endosc. 2012;76:625–640.PubMedCrossRefGoogle Scholar
  9. 9.
    Schuppan D, Junker Y, Barisani D. Celiac disease: from pathogenesis to novel therapies. Gastroenterology. 2009;137:1912–1933.PubMedCrossRefGoogle Scholar
  10. 10.
    Abadie V, Sollid LM, Barreiro LB, Jabri B. Integration of genetic and immunological insights into a model of celiac disease pathogenesis. Annu Rev Immunol. 2011;29:493–525.PubMedCrossRefGoogle Scholar
  11. 11.
    Pender SL, Tickle SP, Docherty AJ, Howie D, Wathen NC, MacDonald TT. A major role for matrix metalloproteinases in T cell injury in the gut. J Immunol. 1997;158:1582–1590.PubMedGoogle Scholar
  12. 12.
    Daum S, Bauer U, Foss HD, et al. Increased expression of mRNA for matrix metalloproteinases-1 and -3 and tissue inhibitor of metalloproteinases-1 in intestinal biopsy specimens from patients with coeliac disease. Gut. 1999;44:17–25.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Ciccocioppo R, Di Sabatino A, Bauer M, et al. Matrix metalloproteinase pattern in celiac duodenal mucosa. Lab Invest. 2005;85:397–407.PubMedCrossRefGoogle Scholar
  14. 14.
    Green PHR, Jabri B. Coeliac disease. Lancet. 2003;362:383–391.PubMedCrossRefGoogle Scholar
  15. 15.
    Maiuri L, Ciacci C, Ricciardelli I, et al. Association between innate response to gliadin and activation of pathogenic T cells in coeliac disease. Lancet. 2003;362:30–37.PubMedCrossRefGoogle Scholar
  16. 16.
    Londei M, Ciacci C, Ricciardelli I, Vacca L, Quaratino S, Maiuri L. Gliadin as a stimulator of innate responses in celiac disease. Mol Immunol. 2005;42:913–918.PubMedCrossRefGoogle Scholar
  17. 17.
    Lammers KM, Lu R, Brownley J, et al. Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology. 2008;135:e3.PubMedGoogle Scholar
  18. 18.
    Thomas KE, Sapone A, Fasano A, Vogel SN. Gliadin stimulation of murine macrophage inflammatory gene expression and intestinal permeability are MyD88-dependent: role of the innate immune response in Celiac disease. J Immunol. 2006;176:2512–2521.PubMedCrossRefGoogle Scholar
  19. 19.
    Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9:313–323.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Meresse B, Cerf-Bensussan N. Innate T cell responses in human gut. Semin Immunol. 2009;21:121–129.PubMedCrossRefGoogle Scholar
  21. 21.
    Palmer E. The generation of T cell tolerance. Swiss Med Wkly. 2007;137:99S–100S.PubMedGoogle Scholar
  22. 22.
    Sharma R, Young C, Neu J. Molecular modulation of intestinal epithelial barrier: contribution of microbiota. J Biomed Biotechnol. 2010;2010:305879.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Nagler-Anderson C. Man the barrier! Strategic defences in the intestinal mucosa. Nat Rev Immunol. 2001;1:59–67.PubMedCrossRefGoogle Scholar
  24. 24.
    Ashida H, Ogawa M, Kim M, Mimuro H, Sasakawa C. Bacteria and host interactions in the gut epithelial barrier. Nat Chem Biol. 2012;8:36–45.CrossRefGoogle Scholar
  25. 25.
    Stappenbeck TS, Hooper LV, Gordon JI. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci USA. 2002;99:15451–15455.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Pace NR. A molecular view of microbial diversity and the biosphere. Science. 1997;276:734–740.PubMedCrossRefGoogle Scholar
  27. 27.
    Rondon MR, August PR, Bettermann AD, et al. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol. 2000;66:2541–2547.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Hamady M, Knight R. Microbial community profiling for human microbiome projects: tools, techniques, and challenges. Genome Res. 2009;19:1141–1152.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Greco L, Romino R, Coto I, et al. The first large population based twin study of coeliac disease. Gut. 2002;50:624–628.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Ivarsson A, Myléus A, Norström F, et al. Prevalence of childhood celiac disease and changes in infant feeding. Pediatrics. 2013;131:e687–e694.PubMedCrossRefGoogle Scholar
  31. 31.
    Norris JM, Barriga K, Hoffenberg EJ, et al. Risk of celiac disease autoimmunity and timing of gluten introduction in the diet of infants at increased risk of disease. JAMA. 2005;293:2343–2351.PubMedCrossRefGoogle Scholar
  32. 32.
    Lionetti E, Castellaneta S, Francavilla R, et al. Introduction of gluten, HLA status, and the risk of celiac disease in children. N Engl J Med. 2014;371:1295–1303.PubMedCrossRefGoogle Scholar
  33. 33.
    Vriezinga SL, Auricchio R, Bravi E, et al. Randomized feeding intervention in infants at high risk for celiac disease. N Engl J Med. 2014;371:1304–1315.PubMedCrossRefGoogle Scholar
  34. 34.
    Myléus A, Hernell O, Gothefors L, et al. Early infections are associated with increased risk for celiac disease: an incident case-referent study. BMC Pediatr. 2012;12:194.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Collado MC, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Specific duodenal and faecal bacterial groups associated with paediatric coeliac disease. J Clin Pathol. 2009;62:264–269.PubMedCrossRefGoogle Scholar
  36. 36.
    De Palma G, Nadal I, Medina M, et al. Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children. BMC Microbiol. 2010;10:63.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Stene LC, Honeyman MC, Hoffenberg EJ, et al. Rotavirus infection frequency and risk of celiac disease autoimmunity in early childhood: a longitudinal study. Am J Gastroenterol. 2006;101:2333–2340.PubMedCrossRefGoogle Scholar
  38. 38.
    Pavone P, Nicolini E, Taibi R, Ruggieri M. Rotavirus and celiac disease. Am J Gastroenterol. 1831;2007:102.Google Scholar
  39. 39.
    Decker E, Engelmann G, Findeisen A, et al. Cesarean delivery is associated with celiac disease but not inflammatory bowel disease in children. Pediatrics. 2010;125:e1433–e1440.PubMedCrossRefGoogle Scholar
  40. 40.
    Mårild K, Stephansson O, Montgomery S, Murray JA, Ludvigsson JF. Pregnancy outcome and risk of celiac disease in offspring: a nationwide case-control study. Gastroenterology. 2012;142:e3.PubMedCrossRefGoogle Scholar
  41. 41.
    Lasa J, Zubiaurre I, Dima G, Peralta D, Soifer L. Helicobacter pylori prevalence in patients with celiac disease: results from a cross-sectional study. Arq Gastroenterol. 2015;52:139–142.PubMedCrossRefGoogle Scholar
  42. 42.
    Lebwohl B, Blaser MJ, Ludvigsson JF, et al. Decreased risk of celiac disease in patients with Helicobacter pylori colonization. Am J Epidemiol. 2013;178:1721–1730.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Simondi D, Ribaldone DG, Bonagura GA, et al. Helicobacter pylori in celiac disease and in duodenal intraepithelial lymphocytosis: active protagonist or innocent bystander? Clin Res Hepatol Gastroenterol. 2015;39:740–745.PubMedCrossRefGoogle Scholar
  44. 44.
    Jozefczuk J, Bancerz B, Walkowiak M, et al. Prevalence of Helicobacter pylori infection in pediatric celiac disease. Eur Rev Med Pharmacol Sci. 2015;19:2031–2035.PubMedGoogle Scholar
  45. 45.
    Cinova J, De Palma G, Stepankova R, et al. Role of intestinal bacteria in gliadin-induced changes in intestinal mucosa: study in germ-free rats. PLoS One. 2011;6:e16169.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Laparra JM, Olivares M, Gallina O, Sanz Y. Bifidobacterium longum CECT 7347 modulates immune responses in a gliadin-induced enteropathy animal model. PLoS One. 2012;7:e30744.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Papista C, Gerakopoulos V, Kourelis A, et al. Gluten induces coeliac-like disease in sensitised mice involving IgA, CD71 and transglutaminase 2 interactions that are prevented by probiotics. Lab Invest. 2012;92:625–635.PubMedCrossRefGoogle Scholar
  48. 48.
    D’Arienzo R, Stefanile R, Maurano F, et al. Immunomodulatory effects of Lactobacillus casei administration in a mouse model of gliadin-sensitive enteropathy. Scand J Immunol. 2011;74:335–341.PubMedCrossRefGoogle Scholar
  49. 49.
    Sanz Y, Sánchez E, Marzotto M, Calabuig M, Torriani S, Dellaglio F. Differences in faecal bacterial communities in coeliac and healthy children as detected by PCR and denaturing gradient gel electrophoresis. FEMS Immunol Med Microbiol. 2007;51:562–568.PubMedCrossRefGoogle Scholar
  50. 50.
    Nistal E, Caminero A, Vivas S, et al. Differences in faecal bacteria populations and faecal bacteria metabolism in healthy adults and celiac disease patients. Biochimie. 2012;94:1724–1729.PubMedCrossRefGoogle Scholar
  51. 51.
    Tjellström B, Stenhammar L, Högberg L, et al. Gut microflora associated characteristics in children with celiac disease. Am J Gastroenterol. 2005;100:2784–2788.PubMedCrossRefGoogle Scholar
  52. 52.
    Sánchez E, Ribes-Koninckx C, Calabuig M, Sanz Y. Intestinal Staphylococcus spp. and virulent features associated with coeliac disease. J Clin Pathol. 2012;65:830–834.PubMedCrossRefGoogle Scholar
  53. 53.
    Chiba M, Hoshina S, Kono M, et al. Staphylococcus aureus in inflammatory bowel disease. Scand J Gastroenterol. 2001;36:615–620.PubMedCrossRefGoogle Scholar
  54. 54.
    Nguyen GC, Patel H, Chong RY. Increased prevalence of and associated mortality with methicillin-resistant Staphylococcus aureus among hospitalized IBD patients. Am J Gastroenterol. 2010;105:371–377.PubMedCrossRefGoogle Scholar
  55. 55.
    Ong PY, Patel M, Ferdman RM, Dunaway T, Church JA. Association of staphylococcal superantigen-specific immunoglobulin e with mild and moderate atopic dermatitis. J Pediatr. 2008;153:803–806.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Garza-González E, Morfín-Otero R, Llaca-Díaz JM, Rodriguez-Noriega E. Staphylococcal cassette chromosome mec (SCC mec) in methicillin-resistant coagulase-negative staphylococci. A review and the experience in a tertiary-care setting. Epidemiol Infect. 2010;138:645–654.PubMedCrossRefGoogle Scholar
  57. 57.
    Olivares M, Neef A, Castillejo G, et al. The HLA-DQ2 genotype selects for early intestinal microbiota composition in infants at high risk of developing coeliac disease. Gut. 2015;64:406–417.PubMedCrossRefGoogle Scholar
  58. 58.
    Nadal I, Donat E, Donant E, Ribes-Koninckx C, Calabuig M, Sanz Y. Imbalance in the composition of the duodenal microbiota of children with coeliac disease. J Med Microbiol. 2007;56:1669–1674.PubMedCrossRefGoogle Scholar
  59. 59.
    Sánchez E, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Intestinal Bacteroides species associated with coeliac disease. J Clin Pathol. 2010;63:1105–1111.PubMedCrossRefGoogle Scholar
  60. 60.
    Nistal E, Caminero A, Herrán AR, et al. Differences of small intestinal bacteria populations in adults and children with/without celiac disease: effect of age, gluten diet, and disease. Inflamm Bowel Dis. 2012;18:649–656.PubMedCrossRefGoogle Scholar
  61. 61.
    Sánchez E, Donat E, Ribes-Koninckx C, Fernández-Murga ML, Sanz Y. Duodenal-mucosal bacteria associated with celiac disease in children. Appl Environ Microbiol. 2013;79:5472–5479.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Ou G, Hedberg M, Hörstedt P, et al. Proximal small intestinal microbiota and identification of rod-shaped bacteria associated with childhood celiac disease. Am J Gastroenterol. 2009;104:3058–3067.PubMedCrossRefGoogle Scholar
  63. 63.
    Forsberg G, Fahlgren A, Hörstedt P, Hammarström S, Hernell O, Hammarström M-L. Presence of bacteria and innate immunity of intestinal epithelium in childhood celiac disease. Am J Gastroenterol. 2004;99:894–904.PubMedCrossRefGoogle Scholar
  64. 64.
    Wacklin P, Kaukinen K, Tuovinen E, et al. The duodenal microbiota composition of adult celiac disease patients is associated with the clinical manifestation of the disease. Inflamm Bowel Dis. 2013;19:934–941.PubMedCrossRefGoogle Scholar
  65. 65.
    Kalliomäki M, Satokari R, Lähteenoja H, et al. Expression of microbiota, Toll-like receptors, and their regulators in the small intestinal mucosa in celiac disease. J Pediatr Gastroenterol Nutr. 2012;54:727–732.PubMedCrossRefGoogle Scholar
  66. 66.
    Maynard CL, Elson CO, Hatton RD, Weaver CT. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012;489:231–241.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Abreu MT. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol. 2010;10:131–144.PubMedCrossRefGoogle Scholar
  68. 68.
    Collado MC, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Imbalances in faecal and duodenal Bifidobacterium species composition in active and non-active coeliac disease. BMC Microbiol. 2008;8:232.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Di Cagno R, De Angelis M, De Pasquale I, et al. Duodenal and faecal microbiota of celiac children: molecular, phenotype and metabolome characterization. BMC Microbiol. 2011;11:219.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Golfetto L, de Senna FD, Hermes J, Beserra BTS, França FDS, Martinello F. Lower bifidobacteria counts in adult patients with celiac disease on a gluten-free diet. Arq Gastroenterol. 2014;51:139–143.PubMedCrossRefGoogle Scholar
  71. 71.
    De Meij TGJ, Budding AE, Grasman ME, Kneepkens CMF, Savelkoul PHM, Mearin ML. Composition and diversity of the duodenal mucosa-associated microbiome in children with untreated coeliac disease. Scand J Gastroenterol. 2013;48:530–536.PubMedCrossRefGoogle Scholar
  72. 72.
    De Palma G, Nadal I, Collado MC, Sanz Y. Effects of a gluten-free diet on gut microbiota and immune function in healthy adult human subjects. Br J Nutr. 2009;102:1154–1160.PubMedCrossRefGoogle Scholar
  73. 73.
    Jackson FW. Effects of a gluten-free diet on gut microbiota and immune function in healthy adult human subjects—comment by Jackson. Br J Nutr. 2010;104:773.PubMedCrossRefGoogle Scholar
  74. 74.
    Moshfegh AJ, Friday JE, Goldman JP, Ahuja JK. Presence of inulin and oligofructose in the diets of Americans. J Nutr. 1999;129:1407S–1411S.PubMedGoogle Scholar
  75. 75.
    Van Loo J, Coussement P, de Leenheer L, Hoebregs H, Smits G. On the presence of inulin and oligofructose as natural ingredients in the western diet. Crit Rev Food Sci Nutr. 1995;35:525–552.PubMedCrossRefGoogle Scholar
  76. 76.
    Di Cagno R, Rizzello CG, Gagliardi F, et al. Different fecal microbiotas and volatile organic compounds in treated and untreated children with celiac disease. Appl Environ Microbiol. 2009;75:3963–3971.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Schippa S, Iebba V, Barbato M, et al. A distinctive “microbial signature” in celiac pediatric patients. BMC Microbiol. 2010;10:175.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Wacklin P, Laurikka P, Lindfors K, et al. Altered duodenal microbiota composition in celiac disease patients suffering from persistent symptoms on a long-term gluten-free diet. Am J Gastroenterol. 2014;109:1933–1941.PubMedCrossRefGoogle Scholar
  79. 79.
    Marasco G, Colecchia A, Festi D. Dysbiosis in Celiac disease patients with persistent symptoms on gluten-free diet: a condition similar to that present in irritable bowel syndrome patients? Am J Gastroenterol. 2015;110:598.PubMedCrossRefGoogle Scholar
  80. 80.
    Roma E, Roubani A, Kolia E, Panayiotou J, Zellos A, Syriopoulou VP. Dietary compliance and life style of children with coeliac disease. J Hum Nutr Diet. 2010;23:176–182.PubMedCrossRefGoogle Scholar
  81. 81.
    Sonti R, Green PHR. Celiac disease: obesity in celiac disease. Nat Rev Gastroenterol Hepatol. 2012;9:247–248.PubMedCrossRefGoogle Scholar
  82. 82.
    Kabbani TA, Goldberg A, Kelly CP, et al. Body mass index and the risk of obesity in coeliac disease treated with the gluten-free diet. Aliment Pharmacol Ther. 2012;35:723–729.PubMedCrossRefGoogle Scholar
  83. 83.
    Mariani P, Viti MG, Montuori M, et al. The gluten-free diet: a nutritional risk factor for adolescents with celiac disease? J Pediatr Gastroenterol Nutr. 1998;27:519–523.PubMedCrossRefGoogle Scholar
  84. 84.
    Scaramuzza AE, Mantegazza C, Bosetti A, Zuccotti GV. Type 1 diabetes and celiac disease: the effects of gluten free diet on metabolic control. World J Diabetes. 2013;4:130–134.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Kaukinen K, Lindfors K, Mäki M. Advances in the treatment of coeliac disease: an immunopathogenic perspective. Nat Rev Gastroenterol Hepatol. 2014;11:36–44.PubMedCrossRefGoogle Scholar
  86. 86.
    Vanderpool C, Yan F, Polk DB. Mechanisms of probiotic action: implications for therapeutic applications in inflammatory bowel diseases. Inflamm Bowel Dis. 2008;14:1585–1596.PubMedCrossRefGoogle Scholar
  87. 87.
    Zeng J, Li Y-Q, Zuo X-L, Zhen Y-B, Yang J, Liu C-H. Clinical trial: effect of active lactic acid bacteria on mucosal barrier function in patients with diarrhoea-predominant irritable bowel syndrome. Aliment Pharmacol Ther. 2008;28:994–1002.PubMedCrossRefGoogle Scholar
  88. 88.
    Seth A, Yan F, Polk DB, Rao RK. Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC- and MAP kinase-dependent mechanism. Am J Physiol Gastrointest Liver Physiol. 2008;294:G1060–G1069.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Lindfors K, Blomqvist T, Juuti-Uusitalo K, et al. Live probiotic Bifidobacterium lactis bacteria inhibit the toxic effects induced by wheat gliadin in epithelial cell culture. Clin Exp Immunol. 2008;152:552–558.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Medina M, Izquierdo E, Ennahar S, Sanz Y. Differential immunomodulatory properties of Bifidobacterium logum strains: relevance to probiotic selection and clinical applications. Clin Exp Immunol. 2007;150:531–538.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Baba N, Samson S, Bourdet-Sicard R, Rubio M, Sarfati M. Commensal bacteria trigger a full dendritic cell maturation program that promotes the expansion of non-Tr1 suppressor T cells. J Leukoc Biol. 2008;84:468–476.PubMedCrossRefGoogle Scholar
  92. 92.
    Medina M, De Palma G, Ribes-Koninckx C, Calabuig M, Sanz Y. Bifidobacterium strains suppress in vitro the pro-inflammatory milieu triggered by the large intestinal microbiota of coeliac patients. J Inflamm (Lond). 2008;5:19.CrossRefGoogle Scholar
  93. 93.
    Laparra JM, Sanz Y. Bifidobacteria inhibit the inflammatory response induced by gliadins in intestinal epithelial cells via modifications of toxic peptide generation during digestion. J Cell Biochem. 2010;109:801–807.PubMedGoogle Scholar
  94. 94.
    Laparra JM, Olivares M, Sanz Y. Oral administration of Bifidobacterium longum CECT 7347 ameliorates gliadin-induced alterations in liver iron mobilisation. Br J Nutr. 2013;110:1828–1836.PubMedCrossRefGoogle Scholar
  95. 95.
    De Palma G, Cinova J, Stepankova R, Tuckova L, Sanz Y. Pivotal advance: bifidobacteria and gram-negative bacteria differentially influence immune responses in the proinflammatory milieu of celiac disease. J Leukoc Biol. 2010;87:765–778.PubMedCrossRefGoogle Scholar
  96. 96.
    D’Arienzo R, Maurano F, Lavermicocca P, Ricca E, Rossi M. Modulation of the immune response by probiotic strains in a mouse model of gluten sensitivity. Cytokine. 2009;48:254–259.PubMedCrossRefGoogle Scholar
  97. 97.
    De Angelis M, Rizzello CG, Fasano A, et al. VSL#3 probiotic preparation has the capacity to hydrolyze gliadin polypeptides responsible for Celiac Sprue. Biochim Biophys Acta. 2006;1762:80–93.PubMedCrossRefGoogle Scholar
  98. 98.
    Smecuol E, Hwang HJ, Sugai E, Corso L, et al. Exploratory, randomized, double-blind, placebo-controlled study on the effects of Bifidobacterium infantis natren life start strain super strain in active celiac disease. J Clin Gastroenterol. 2013;47:139–147.PubMedCrossRefGoogle Scholar
  99. 99.
    Olivares M, Castillejo G, Varea V, Sanz Y. Double-blind, randomised, placebo-controlled intervention trial to evaluate the effects of Bifidobacterium longum CECT 7347 in children with newly diagnosed coeliac disease. Br J Nutr. 2014;112:30–40.PubMedCrossRefGoogle Scholar
  100. 100.
    Lorenzo Pisarello MJ, Vintiñi EO, González SN, Pagani F, Medina MS. Decrease in lactobacilli in the intestinal microbiota of celiac children with a gluten-free diet, and selection of potentially probiotic strains. Can J Microbiol. 2015;61:32–37.PubMedCrossRefGoogle Scholar
  101. 101.
    Capriles VD, Arêas JAG. Effects of prebiotic inulin-type fructans on structure, quality, sensory acceptance and glycemic response of gluten-free breads. Food Funct. 2013;4:104–110.PubMedCrossRefGoogle Scholar
  102. 102.
    Cheng J, Kalliomäki M, Heilig HGHJ, et al. Duodenal microbiota composition and mucosal homeostasis in pediatric celiac disease. BMC Gastroenterol. 2013;13:113.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Giovanni Marasco
    • 1
    Email author
  • Anna Rita Di Biase
    • 2
  • Ramona Schiumerini
    • 1
  • Leonardo Henry Eusebi
    • 1
  • Lorenzo Iughetti
    • 2
  • Federico Ravaioli
    • 1
  • Eleonora Scaioli
    • 1
  • Antonio Colecchia
    • 1
  • Davide Festi
    • 1
  1. 1.Department of Medical and Surgical ScienceUniversity of BolognaBolognaItaly
  2. 2.Department of PediatricsUniversity of ModenaModenaItaly

Personalised recommendations