Skip to main content

Advertisement

Log in

Developmental Stage-Specific Embryonic Induction of HepG2 Cell Differentiation

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Although hepatocellular carcinoma cells can sometimes undergo differentiation in an embryonic microenvironment, the mechanism is poorly understood.

Aim

The developmental stage-specific embryonic induction of tumor cell differentiation was investigated.

Methods

Both chick and mouse liver extracts and hepatoblast-enriched cells at different developmental stages were used to treat human hepatoma HepG2 cells, and the effects on the induction of differentiation were evaluated. The nuclear factors controlling differentiation, hepatocyte nuclear factor (HNF)-4α, HNF-1α, HNF-6 and upstream stimulatory factor-1 (USF-1), and the oncogene Myc and alpha-fetoprotein (AFP) were measured. HNF-4α RNA interference was used to verify the role of HNF-4α. Embryonic induction effects were further tested in vivo by injecting HepG2 tumor cells into immunodeficient nude mice.

Results

The 9–11-days chick liver extracts and 13.5–14.5-days mouse hepatoblast-enriched cells could inhibit proliferation and induce differentiation of HepG2 cells, leading to either death or maturation to hepatocytes. The maturation of surviving HepG2 cells was confirmed by increases in the expressions of HNF-4α, HNF-1α, HNF-6, and USF-1, and decreases in Myc and AFP. The embryonic induction of HepG2 cell maturation could be attenuated by HNF-4α RNA interference. Furthermore, the 13.5-days mouse hepatoblast culture completely eliminated HepG2 tumors with inhibited Myc and induced HNF-4α, confirming this embryonic induction effect in vivo.

Conclusions

This study demonstrated that developmental stage-specific embryonic induction of HepG2 cell differentiation might help in understanding embryonic differentiation and oncogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yong KJ, Gao C, Lim JS, et al. Oncofetal gene SALL4 in aggressive hepatocellular carcinoma. N Engl J Med. 2013;368:2266–2276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Huang X, Liu F, Zhu C, et al. Suppression of KIF3B expression inhibits human hepatocellular carcinoma proliferation. Dig Dis Sci. 2014;59:795–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.

    Article  PubMed  Google Scholar 

  4. Yamashita T, Ji J, Budhu A, et al. EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology. 2009;136:1012–1024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ben-David U, Benvenisty N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer. 2011;11:268–277.

    Article  CAS  PubMed  Google Scholar 

  6. Becker D, Sfakianakis I, Krupp M, et al. Genetic signatures shared in embryonic liver development and liver cancer define prognostically relevant subgroups in HCC. Mol Cancer. 2012;11:55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sell S, Nicolini A, Ferrari P, Biava PM. Cancer: a problem of developmental biology; scientific evidence for reprogramming and differentiation therapy. Curr Drug Targets. 2015 [Epub ahead of print].

  8. Biava PM, Nicolini A, Ferrari P, Carpi A, Sell S. A systemic approach to cancer treatment: tumor cell reprogramming focused on endocrine-related cancers. Curr Med Chem. 2014;21:1072–1081.

    Article  CAS  PubMed  Google Scholar 

  9. Joel M, Sandberg CJ, Boulland JL, Vik-Mo EO, Langmoen IA, Glover JC. Inhibition of tumor formation and redirected differentiation of glioblastoma cells in a xenotypic embryonic environment. Dev Dyn. 2013;242:1078–1093.

    Article  CAS  PubMed  Google Scholar 

  10. Hendrix MJ, Seftor EA, Seftor RE, Kasemeier-Kulesa J, Kulesa PM, Postovit LM. Reprogramming metastatic tumour cells with embryonic microenvironments. Nat Rev Cancer. 2007;7:246–255.

    Article  CAS  PubMed  Google Scholar 

  11. Postovit LM, Margaryan NV, Seftor EA, et al. Human embryonic stem cell microenvironment suppresses the tumorigenic phenotype of aggressive cancer cells. Proc Natl Acad Sci USA. 2008;105:4329–4334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yu JM, Jun ES, Bae YC, Jung JS. Mesenchymal stem cells derived from human adipose tissues favor tumor cell growth in vivo. Stem Cells Dev. 2008;17:463–473.

    Article  CAS  PubMed  Google Scholar 

  13. Kamino H, Moore R, Negishi M. Role of a novel CAR-induced gene, TUBA8, in hepatocellular carcinoma cell lines. Cancer Genet. 2011;204:382–391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Woo HG, Park ES, Thorgeirsson SS, Kim YJ. Exploring genomic profiles of hepatocellular carcinoma. Mol Carcinog. 2011;50:235–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li T, Huang J, Jiang Y, et al. Multi-stage analysis of gene expression and transcription regulation in C57/B6 mouse liver development. Genomics. 2009;93:235–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nagaki M, Moriwaki H. Transcription factor HNF and hepatocyte differentiation. Hepatol Res. 2008;38:961–969.

    Article  CAS  PubMed  Google Scholar 

  17. Zeng X, Lin Y, Yin C, et al. Recombinant adenovirus carrying the hepatocyte nuclear factor-1alpha gene inhibits hepatocellular carcinoma xenograft growth in mice. Hepatology. 2011;54:2036–2047.

    Article  CAS  PubMed  Google Scholar 

  18. Beaudry JB, Pierreux CE, Hayhurst GP, et al. Threshold levels of hepatocyte nuclear factor 6 (HNF-6) acting in synergy with HNF-4 and PGC-1alpha are required for time-specific gene expression during liver development. Mol Cell Biol. 2006;26:6037–6046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. van Deursen D, van Leeuwen M, Vaulont S, Jansen H, Verhoeven AJ. Upstream Stimulatory Factors 1 and 2 activate the human hepatic lipase promoter via E-box dependent and independent mechanisms. Biochim Biophys Acta. 2009;1791:229–237.

    Article  PubMed  Google Scholar 

  20. Odom DT, Dowell RD, Jacobsen ES, et al. Core transcriptional regulatory circuitry in human hepatocytes. Mol Syst Biol. 2006;2006:0017.

    Google Scholar 

  21. Guo J, Parise RA, Joseph E, et al. Efficacy, pharmacokinetics, tissue distribution, and metabolism of the Myc-Max disruptor, 10058-F4 [Z, E]-5-[4-ethylbenzylidine]-2-thioxothiazolidin-4-one, in mice. Cancer Chemother Pharmacol. 2009;63:615–625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hung TM, Hu RH, Ho CM, et al. Downregulation of alpha-fetoprotein expression by LHX4: a critical role in hepatocarcinogenesis. Carcinogenesis. 2011;32:1815–1823.

    Article  CAS  PubMed  Google Scholar 

  23. Personeni N, Bozzarelli S, Pressiani T, et al. Usefulness of alpha-fetoprotein response in patients treated with sorafenib for advanced hepatocellular carcinoma. J Hepatol. 2012;57:101–107.

    Article  CAS  PubMed  Google Scholar 

  24. Yin C, Lin Y, Zhang X, et al. Differentiation therapy of hepatocellular carcinoma in mice with recombinant adenovirus carrying hepatocyte nuclear factor-4alpha gene. Hepatology. 2008;48:1528–1539.

    Article  CAS  PubMed  Google Scholar 

  25. Walesky C, Edwards G, Borude P, et al. Hepatocyte nuclear factor 4 alpha deletion promotes diethylnitrosamine-induced hepatocellular carcinoma in rodents. Hepatology. 2013;57:2480–2490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li Y, Liu D, Liu Y, et al. Protein nitration promotes inducible nitric oxide synthase transcription mediated by NF-κB in high glucose-stimulated human lens epithelial cells. Mol Cell Endocrinol. 2013;370:78–86.

    Article  CAS  PubMed  Google Scholar 

  27. Hebbard L, Cecena G, Golas J, et al. Control of mammary tumor differentiation by SKI-606 (bosutinib). Oncogene. 2011;30:301–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cruz FD, Matushansky I. Solid tumor differentiation therapy—is it possible? Oncotarget. 2012;3:559–567.

    Article  PubMed  Google Scholar 

  29. Campos B, Wan F, Farhadi M, et al. Differentiation therapy exerts antitumor effects on stem-like glioma cells. Clin Cancer Res. 2010;16:2715–2728.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Y, Guan DX, Shi J, et al. All-trans retinoic acid potentiates the chemotherapeutic effect of Cisplatin by inducing differentiation of tumor initiating cells in liver cancer. J Hepatol. 2013;59:1255–1263.

    Article  CAS  PubMed  Google Scholar 

  31. Postovit LM, Seftor EA, Seftor RE, Hendrix MJ. A three-dimensional model to study the epigenetic effects induced by the microenvironment of human embryonic stem cells. Stem Cells. 2006;24:501–505.

    Article  CAS  PubMed  Google Scholar 

  32. Ingber DE. Can cancer be reversed by engineering the tumor microenvironment? Semin Cancer Biol. 2008;18:356–364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nakayama M, Matsumoto K, Tatsumi N, Yanai M, Yokouchi Y. Id3 is important for proliferation and differentiation of the hepatoblasts during the chick liver development. Mech Dev. 2006;123:580–590.

    Article  CAS  PubMed  Google Scholar 

  34. Duncan SA. Mechanisms controlling early development of the liver. Mech Dev. 2003;120:19–33.

    Article  CAS  PubMed  Google Scholar 

  35. Lemaigre F, Zaret KS. Liver development update: new embryo models, cell lineage control, and morphogenesis. Curr Opin Genet Dev. 2004;14:582–590.

    Article  CAS  PubMed  Google Scholar 

  36. Zaret KS, Grompe M. Generation and regeneration of cells of the liver and pancreas. Science. 2008;322:1490–1494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hatziapostolou M, Polytarchou C, Aggelidou E, et al. An HNF4α-miRNA inflammatory feedback circuit regulates hepatocellular oncogenesis. Cell. 2011;147:1233–1247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Takayama K, Inamura M, Kawabata K, et al. Efficient generation of functional hepatocytes from human embryonic stem cells and induced pluripotent stem cells by HNF4α transduction. Mol Ther. 2012;20:127–137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Biava PM, Basevi M, Biggiero L, Borgonovo A, Borgonovo E, Burigana F. Cancer cell reprogramming: stem cell differentiation stage factors and an agent based model to optimize cancer treatment. Curr Pharm Biotechnol. 2011;12:231–242.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81470595) and the Hebei Natural Science Foundation (H2015206101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsheng Qi.

Ethics declarations

Conflict of interest

None.

Additional information

Yanning Li and Yanhong Zong contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10620_2015_3966_MOESM1_ESM.tif

Supplemental Fig. 1 Mouse primary hepatoblasts. Albumin was found in nearly all cells, indicating that they were hepatoblast-enriched cells. Scale bar = 30 μm (TIF 957 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zong, Y., Xiao, Z. et al. Developmental Stage-Specific Embryonic Induction of HepG2 Cell Differentiation. Dig Dis Sci 61, 1098–1106 (2016). https://doi.org/10.1007/s10620-015-3966-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-015-3966-4

Keywords

Navigation