Skip to main content
Log in

Fecal Human β-Defensin 2 in Children with Cystic Fibrosis: Is There a Diminished Intestinal Innate Immune Response?

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Defects in bacterial host defenses in the cystic fibrosis (CF) airways have been extensively investigated, but the role of the intestinal innate immune system in CF is unknown. Human β-defensin 2 (HBD-2) is an antimicrobial protein produced by epithelial surfaces and upregulated by inflammation. Its expression in the CF intestine is unknown.

Aim

To determine whether HBD-2 was present in the feces of patients with CF, and to compare fecal HBD-2 levels between CF and healthy controls (HC). To compare fecal HBD-2 levels in inflamed and noninflamed states, as measured by fecal calprotectin, as a secondary aim.

Methods

Feces from children with CF and HC were collected for analysis.

Results

Thirty-three CF patients and 33 HC were recruited. All CF patients had detectable fecal HBD-2. There was no difference between fecal HBD-2 in CF and HC (median (IQR) 49.1 (19.7–77.2) versus 43.4 (26.5–71.9) ng/g; P = 0.7). Fecal calprotectin was significantly higher in the CF cohort than in HC (median (IQR) 61.3 (43.8–143.8) versus 19.5 (19.5–35.1) mg/kg; P < 0.0001). There was no difference in fecal HBD-2 levels between CF subjects with fecal calprotectin ≥50 mg/kg and <50 mg/kg (50.5 (19.6–80.2) versus 43.0 (19.0–70.4); P = 0.7). There was no correlation between fecal HBD-2 and calprotectin in CF (r = 0.14; P = 0.4).

Conclusion

Fecal HBD-2 levels were not increased in children with CF, in inflamed or noninflamed states. The lack of HBD-2 induction and upregulation under inflammatory conditions may suggest a diminished intestinal innate immune response in CF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Riordan JR, Rommens JM, Kerem B, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989;245:1066–1073.

    Article  CAS  PubMed  Google Scholar 

  2. Quinton PM. Chloride impermeability in cystic fibrosis. Nature. 1983;301:421–422.

    Article  CAS  PubMed  Google Scholar 

  3. Stutts MJ, Canessa CM, Olsen JC, et al. CFTR as a cAMP-dependent regulator of sodium channels. Science. 1995;269:847–850.

    Article  CAS  PubMed  Google Scholar 

  4. Garcia MA, Yang N, Quinton PM. Normal mouse intestinal mucus release requires cystic fibrosis transmembrane regulator-dependent bicarbonate secretion. J Clin Invest. 2009;119:2613–2622.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Brennan S. Innate immune activation and cystic fibrosis. Paediatr Respir Rev. 2008;9:271–280.

    Article  PubMed  Google Scholar 

  6. Stoltz DA, Meyerholz DK, Pezzulo AA, et al. Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth. Sci Transl Med. 2010;2:29ra31.

    PubMed Central  PubMed  Google Scholar 

  7. O’Brien S, Mulcahy H, Fenlon H, et al. Intestinal bile acid malabsorption in cystic fibrosis. Gut. 1993;34:1137–1141.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Hoen AG, Li J, Moulton LA, et al. Associations between gut microbial colonization in early life and respiratory outcomes in cystic fibrosis. J Pediatr. 2015;167:138–147.

    Article  PubMed  Google Scholar 

  9. Schippa S, Iebba V, et al. CFTR allelic variants relate to shifts in fecal microbiota of cystic fibrosis patients. PLoS ONE. 2013;8:e61176.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Gelfond D, Ma C, Semler J, Borowitz D. Intestinal pH and gastrointestinal transit profiles in cystic fibrosis patients measured by wireless motility capsule. Dig Dis Sci. 2013;58:2275–2281.

    Article  CAS  PubMed  Google Scholar 

  11. Pang T, Leach ST, Katz T, Day AS, Ooi CY. Fecal biomarkers of intestinal health and disease in children. Front Pediatr. 2014;2:6.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Bruzzese E, Callegari ML, Raia V, et al. Disrupted intestinal microbiota and intestinal inflammation in children with cystic fibrosis and its restoration with Lactobacillus GG: a randomised clinical trial. PLoS One. 2014;9:e87796.

    Article  PubMed Central  PubMed  Google Scholar 

  13. De Lisle RC. Altered transit and bacterial overgrowth in the cystic fibrosis mouse small intestine. Am J Pathol. 2007;293:G104–G111.

    Google Scholar 

  14. Norkina O, Burnett TG, De Lisle RC. Bacterial overgrowth in the cystic fibrosis transmembrane conductance regulator null mouse small intestine. Infect Immunity. 2004;72:6040–6049.

    Article  CAS  Google Scholar 

  15. Pang T, Leach ST, Katz T, Jaffe A, Day AS, Ooi CY. Elevated fecal M2-pyruvate kinase in children with cystic fibrosis: A clue to the increased risk of intestinal malignancy in adulthood? J Gastroenterol Hepatol. 2015;30:866–871.

    Article  CAS  PubMed  Google Scholar 

  16. Dhaliwal J, Leach S, Katz T, et al. Intestinal inflammation and impact on growth in children with cystic fibrosis. J Pediatr Gastr Nutr. 2015;60:521–526.

    Article  Google Scholar 

  17. Werlin SL, Benuri-Silbiger I, Kerem E, et al. Evidence of intestinal inflammation in patients with cystic fibrosis. J Pediatr Gastr Nutr. 2010;51:304–308.

    CAS  Google Scholar 

  18. del Campo R, Garriga M, Pérez-Aragón A, et al. Improvement of digestive health and reduction in proteobacterial populations in the gut microbiota of cystic fibrosis patients using a Lactobacillus reuteri probiotic preparation: a double blind prospective study. J Cyst Fibros. 2014;13:716–722.

    Article  PubMed  Google Scholar 

  19. Selsted ME, Miller SI, Henschen AH, et al. Enteric defensins: antibiotic peptide components of intestinal host defense. J Cell Biol. 1992;118:929–936.

    Article  CAS  PubMed  Google Scholar 

  20. Langhorst J, Junge A, Rueffer A, et al. Elevated human beta-defensin-2 levels indicate an activation of the innate immune system in patients with irritable bowel syndrome. Am J Gastroenterol. 2009;104:404–410.

    Article  CAS  PubMed  Google Scholar 

  21. Harder J, Bartels J, Christophers E, et al. A peptide antibiotic from human skin. Nature. 1997;387:861.

    Article  CAS  PubMed  Google Scholar 

  22. Diamond G, Russell JP, Bevins CL. Inducible expression of an antibiotic peptide gene in lipopolysaccharide- challenged tracheal epithelial cells. Proc Natl Acad Sci USA. 1996;93:5156–5160.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Stolzenberg ED, Anderson GM, Ackermann MR, Whitlock RH, Zasloff M. Epithelial antibiotic induced in states of disease. Proc Natl Acad Sci USA. 1997;94:8686–8690.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Wehkamp J, Fellermann K, Herrlinger KR, et al. Human beta-defensin 2 but not beta-defensin 1 is expressed preferentially in colonic mucosa of inflammatory bowel disease. Eur J Gastroenterol Hepatol. 2002;14:745–752.

    Article  CAS  PubMed  Google Scholar 

  25. Kim MJ, Lee WY, Choe YH. Expression of TIM-3, Human β-defensin-2, and FOXP3 and correlation with disease activity in pediatric Crohn’s disease with infliximab therapy. Gut Liver. 2014. doi:10.5009/gnl13408.

    Google Scholar 

  26. Kapel N, Benahmed N, Morali A, et al. Fecal beta-defensin-2 in children with inflammatory bowel diseases. J Pediatr Gastroenterol Nutr. 2009;48:117–120.

    Article  CAS  PubMed  Google Scholar 

  27. Kolho KL, Sipponen T, Valtonen E, Savilahti E. Fecal calprotectin, MMP-9, and human beta-defensin-2 levels in pediatric inflammatory bowel disease. Int J Colorectal Dis. 2014;29:43–50.

    Article  PubMed  Google Scholar 

  28. Dauletbaev N, Gropp R, Frye M, Loitsch S, Wagner TO, Bargon J. Expression of human beta defensin (HBD-1 and HBD-2) mRNA in nasal epithelia of adult cystic fibrosis patients, healthy individuals, and individuals with acute cold. Respiration. 2002;69:46–51.

    Article  CAS  PubMed  Google Scholar 

  29. Bals R, Wang X, Wu Z, et al. Human beta-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung. J Clin Invest. 1998;102:874–880.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Van de Kamer HH, Huinick H, Weyers HA. Rapid method for determination of fat in feces. J Biol Chem. 1949;177:347–351.

    Google Scholar 

  31. Loser C, Mollgaard A, Folsch UR. Faecal elastase 1: a novel, highly sensitive, and specific tubeless pancreatic function test. Gut. 1996;39:580–586.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Fagerberg UL, Loof L, Merzoug RD, et al. Fecal calprotectin levels in healthy children studied with an improved assay. J Pediatr Gastr Nutr. 2003;37:468–472.

    Article  CAS  Google Scholar 

  33. Yang D, Chertov O, Bykovskaia SN, et al. Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science. 1999;286:525–528.

    Article  CAS  PubMed  Google Scholar 

  34. Claeys S, Van Hoecke H, Holtappels G, et al. Nasal polyps in patients with and without cystic fibrosis: a differentiation by innate markers and inflammatory mediators. Clin Exp Allergy. 2005;35:467–472.

    Article  CAS  PubMed  Google Scholar 

  35. Jenke AC, Zilbauer M, Postberg J, Wirth S. Human β-defensin 2 expression in ELBW infants with severe necrotizing enterocolitis. Pediatr Res. 2012;72:513–520.

    Article  CAS  PubMed  Google Scholar 

  36. Jenke AC, Postberg J, Mariel B, Hensel K, Foell D, Däbritz J, Wirth S. S100A12 and hBD2 correlate with the composition of the fecal microflora in ELBW infants and expansion of E. coli is associated with NEC. Biomed Res Int. 2013;2013:150372.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Wehkamp J, Harder J, Wehkamp K, et al. NF-B and AP-1-mediated induction of humans zlig-defensin-2 in intestinal epithelial cells by Escherischia coli Nissle 1917: a novel effect of a probiotic bacterium. Infect Immun. 2004;10:5750–5758.

    Article  Google Scholar 

  38. Barker N. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat Rev Mol Cell Biol. 2014;15:19–33.

    Article  CAS  PubMed  Google Scholar 

  39. Bunn SK, Bisset WM, Main MJ, et al. Fecal calprotectin: validation as a noninvasive measure of bowel inflammation in childhood inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2001;33:14–22.

    Article  CAS  PubMed  Google Scholar 

  40. Ahmed N, Corey M, Forstner G, et al. Molecular consequences of cystic fibrosis transmembrane regulator (CFTR) gene mutations in the exocrine pancreas. Gut. 2003;52:1159–1164.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Ooi CY, Dorfman R, Cipolli M, et al. Type of CFTR mutation determines risk of pancreatitis in patients with cystic fibrosis. Gastroenterology. 2011;140:153–161.

    Article  CAS  PubMed  Google Scholar 

  42. Ooi CY, Durie P. Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations in pancreatitis. J Cyst Fibros. 2012;11:355–362.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are highly grateful to all the parents and children participating in the study. We thank Dr. John Morton, Dr. Yvonne Belessis, Dr. Penny Field, Dr. John Widger, Rhonda Bell, Rebecca McDonald, Amanda Thomsen (CF Clinic at Sydney Children’s Hospital Randwick), Lily Nahidi (Sydney Children’s Hospital Clinical Research Centre), Dr. Mark Jacobs, Dr. Kimberley Tan, Dr. Hughie Tsang, Lourdes Lubrin (Eye Clinic at Sydney Children’s Hospital), Roxanne Strachan, and Jung M. Lee.

Grant support

This work was supported by the Cystic Fibrosis Australia Research Trust Grant, the Royal Australasian College of Physicians Research and Education Foundation Award (Servier Staff Research Fellowship), and the Sydney Children’s Hospital Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chee Y. Ooi.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ooi, C.Y., Pang, T., Leach, S.T. et al. Fecal Human β-Defensin 2 in Children with Cystic Fibrosis: Is There a Diminished Intestinal Innate Immune Response?. Dig Dis Sci 60, 2946–2952 (2015). https://doi.org/10.1007/s10620-015-3842-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-015-3842-2

Keywords

Navigation