Digestive Diseases and Sciences

, Volume 60, Issue 10, pp 2985–2995 | Cite as

Hesperetin Induces the Apoptosis of Gastric Cancer Cells via Activating Mitochondrial Pathway by Increasing Reactive Oxygen Species

  • Jixiang Zhang
  • Dandan Wu
  • Vikash
  • Jia Song
  • Jing Wang
  • Jiasheng Yi
  • Weiguo DongEmail author
Original Article



Hesperetin, has been shown to exert biological activities on various types of human cancers. However, few related studies on gastric cancer are available.


In this study, we sought to investigate the effect of hesperetin on gastric cancer and clarify its specific mechanism.

Materials and Methods

Cell Counting Kit-8, 2′,7′-dichlorofluorescin diacetate, JC-1, Hoechst 33258 staining, and western bolt were used to detect cell viability, levels of intracellular reactive oxygen species (ROS), changes in mitochondrial membrane potential (△ψ m), cell apoptosis, and expressions of mitochondrial pathway proteins, respectively. Meanwhile, xenograft tumor models in nude mice were made to evaluate the effect of hesperetin on gastric cancer in vivo.


Compared with the control group, the proliferation of gastric cancer cells in hesperetin groups was significantly inhibited (P < 0.05), and dose- and time-dependent effects were observed. Pretreatment with H2O2 (1 mM) or N-acetyl-l-cysteine (5 mM) enhanced or attenuated the hesperetin-induced inhibition of cell viability (P < 0.05). Percentages of apoptotic cells, levels of intracellular ROS, and △ψ m varied with the dose and treatment time of hesperetin (P < 0.05), and hesperetin caused an increase in the levels of AIF, Apaf-1, Cyt C, caspase-3, caspase-9, and Bax and a decrease in Bcl-2 levels (P < 0.05). Meanwhile, hesperetin significantly inhibited the growth of xenograft tumors (P < 0.05).


Our study suggests that hesperetin could inhibit the proliferation and induce the apoptosis of gastric cancer cells via activating the mitochondrial pathway by increasing the ROS.


Hesperetin Apoptosis Gastric cancer Mitochondria Reactive oxygen species 


Conflict of interest



  1. 1.
    Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64:9–29.CrossRefPubMedGoogle Scholar
  2. 2.
    Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–E386.CrossRefPubMedGoogle Scholar
  3. 3.
    Herszényi L, Tulassay Z. Epidemiology of gastrointestinal and liver tumors. Eur Rev Med Pharmacol Sci. 2010;14:249–258.PubMedGoogle Scholar
  4. 4.
    Yu J, Gao J, Lu Z, Li Y, Shen L. Serum levels of TUBB3 correlate with clinical outcome in Chinese patients with advanced gastric cancer receiving first-line paclitaxel plus capecitabine. Med Oncol. 2012;29:3029–3034.CrossRefPubMedGoogle Scholar
  5. 5.
    Seo JH, Jeong ES, Lee KS, Heo SH, Jeong DG, Choi YK. Lentivirus-mediated shRNA targeting of cyclin D1 enhances the chemosensitivity of human gastric cancer to 5-fluorouracil. Int J Oncol. 2013;43:2007–2014.PubMedGoogle Scholar
  6. 6.
    Xian XS, Park H, Choi MG, Park JM. Cannabinoid receptor agonist as an alternative drug in 5-fluorouracil-resistant gastric cancer cells. Anticancer Res. 2013;33:2541–2547.PubMedGoogle Scholar
  7. 7.
    Garg A, Garg S, Zaneveld LJ, Singla AK. Chemistry and pharmacology of the Citrus bioflavonoid hesperidin. Phytother Res. 2001;15:655–669.CrossRefPubMedGoogle Scholar
  8. 8.
    Choi EJ. Hesperetin induced G1-phase cell cycle arrest in human breast cancer MCF-7 cells: involvement of CDK4 and p21. Nutr Cancer. 2007;59:115–119.CrossRefPubMedGoogle Scholar
  9. 9.
    Cai Y, Luo Q, Sun M, Corke H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004;74:2157–2184.CrossRefPubMedGoogle Scholar
  10. 10.
    Sambantham S, Radha M, Paramasivam A, et al. Molecular mechanism underlying hesperetin-induced apoptosis by in silico analysis and in prostate cancer PC-3 cells. Asian Pac J Cancer Prev. 2013;14:4347–4352.CrossRefPubMedGoogle Scholar
  11. 11.
    Ye L, Chan FL, Chen S, Leung LK. The citrus flavanone hesperetin inhibits growth of aromatase-expressing MCF-7 tumor in ovariectomized athymic mice. J Nutr Biochem. 2012;23:1230–1237.CrossRefPubMedGoogle Scholar
  12. 12.
    Alshatwi AA, Ramesh E, Periasamy VS, Subash-Babu P. The apoptotic effect of hesperetin on human cervical cancer cells is mediated through cell cycle arrest, death receptor, and mitochondrial pathways. Fundam Clin Pharmacol. 2013;27:581–592.CrossRefPubMedGoogle Scholar
  13. 13.
    Aranganathan S, Nalini N. Antiproliferative efficacy of hesperetin (citrus flavonoid) in 1,2-dimethylhydrazine-induced colon cancer. Phytother Res. 2013;27:999–1005.CrossRefPubMedGoogle Scholar
  14. 14.
    Yang Y, Wolfram J, Shen H, Fang X, Ferrari M. Hesperetin: an inhibitor of the transforming growth factor-β (TGF-β) signaling pathway. Eur J Med Chem. 2012;58:390–395.CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Yang Y, Wolfram J, Boom K, Fang X, Shen H, Ferrari M. Hesperetin impairs glucose uptake and inhibits proliferation of breast cancer cells. Cell Biochem Funct. 2013;31:374–379.CrossRefPubMedGoogle Scholar
  16. 16.
    Patel PN, Yu XM, Jaskula-Sztul R, Chen H. Hesperetin activates the Notch1 signaling cascade, causes apoptosis, and induces cellular differentiation in anaplastic thyroid cancer. Ann Surg Oncol. 2014;21:S497–S504.CrossRefPubMedGoogle Scholar
  17. 17.
    Zarebczan B, Pinchot SN, Kunnimalaiyaan M, Chen H. Hesperetin, a potential therapy for carcinoid cancer. Am J Surg. 2011;201:329–332; discussion 333.Google Scholar
  18. 18.
    Haidari F, Ali Keshavarz S, Reza Rashidi M, Mohammad Shahi M. Orange juice and hesperetin supplementation to hyperuricemic rats alter oxidative stress markers and xanthine oxidoreductase activity. J Clin Biochem Nutr. 2009;45:285–291.CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Yang HL, Chen SC, Senthil Kumar KJ, et al. Antioxidant and anti-inflammatory potential of hesperetin metabolites obtained from hesperetin-administered rat serum: an ex vivo approach. J Agric Food Chem. 2012;60:522–532.CrossRefPubMedGoogle Scholar
  20. 20.
    Zhang H, Gomez AM, Wang X, Yan Y, Zheng M, Cheng H. ROS regulation of microdomain Ca(2+) signalling at the dyads. Cardiovasc Res. 2013;98:248–258.CrossRefPubMedGoogle Scholar
  21. 21.
    Sena LA, Chandel NS. Physiological roles of mitochondrial reactive oxygen species. Mol Cell. 2012;48:158–167.CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Finkel T. Signal transduction by reactive oxygen species. J Cell Biol. 2011;194:7–15.CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Grivennikova VG, Vinogradov AD. Mitochondrial production of reactive oxygen species. Biochemistry (Mosc). 2013;78:1490–1511.CrossRefPubMedGoogle Scholar
  24. 24.
    Starkov AA. The role of mitochondria in reactive oxygen species metabolism and signaling. Ann NY Acad Sci. 2008;1147:37–52.CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Chang MC, Chang HH, Chan CP, et al. p-Cresol affects reactive oxygen species generation, cell cycle arrest, cytotoxicity and inflammation/atherosclerosis-related modulators production in endothelial cells and mononuclear cells. PLoS One. 2014;9:e114446.CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Rehman AU, Dugic E, Benham C, Lione L, Mackenzie LS. Selective inhibition of NADPH oxidase reverses the over contraction of diabetic rat aorta. Redox Biol. 2013;2C:61–64.PubMedGoogle Scholar
  27. 27.
    Prasad K, Dhar I. Oxidative stress as a mechanism of added sugar-induced cardiovascular disease. Int J Angiol. 2014;23:217–226.CrossRefPubMedGoogle Scholar
  28. 28.
    Dhillon H, Chikara S, Reindl KM. Piperlongumine induces pancreatic cancer cell death by enhancing reactive oxygen species and DNA damage. Toxicol Rep. 2014;1:309–318.CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Udensi UK, Tchounwou PB. Dual effect of oxidative stress on leukemia cancer induction and treatment. J Exp Clin Cancer Res. 2014;33:106.CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Wang P, Xie K, Wang C, Bi J. Oxidative stress induced by lipid peroxidation is related with inflammation of demyelination and neurodegeneration in multiple sclerosis. Eur Neurol. 2014;72:249–254.PubMedGoogle Scholar
  31. 31.
    Nijland PG, Witte ME, van Het Hof B, et al. Astroglial PGC-1alpha increases mitochondrial antioxidant capacity and suppresses inflammation: implications for multiple sclerosis. Acta Neuropathol Commun. 2014;2:170.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Sivagami G, Vinothkumar R, Bernini R, et al. Role of hesperetin (a natural flavonoid) and its analogue on apoptosis in HT-29 human colon adenocarcinoma cell line—a comparative study. Food Chem Toxicol. 2012;50:660–671.CrossRefPubMedGoogle Scholar
  33. 33.
    Choi EJ, Ahn WS. Neuroprotective effects of chronic hesperetin administration in mice. Arch Pharm Res. 2008;31:1457–1462.CrossRefPubMedGoogle Scholar
  34. 34.
    Aranganathan S, Selvam JP, Nalini N. Effect of hesperetin, a citrus flavonoid, on bacterial enzymes and carcinogen-induced aberrant crypt foci in colon cancer rats: a dose-dependent study. J Pharm Pharmacol. 2008;60:1385–1392.CrossRefPubMedGoogle Scholar
  35. 35.
    Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA. Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques. 2011;50:98–115.CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Ly JD, Grubb DR, Lawen A. The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update. Apoptosis. 2003;8:115–128.CrossRefPubMedGoogle Scholar
  37. 37.
    Solaini G, Sgarbi G, Lenaz G, Baracca A. Evaluating mitochondrial membrane potential in cells. Biosci Rep. 2007;27:11–21.CrossRefPubMedGoogle Scholar
  38. 38.
    Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science. 2004;305:626–629.CrossRefPubMedGoogle Scholar
  39. 39.
    Chen Q, Lesnefsky EJ. Blockade of electron transport during ischemia preserves bcl-2 and inhibits opening of the mitochondrial permeability transition pore. FEBS Lett. 2011;585:921–926.CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Halestrap AP, Doran E, Gillespie JP, O’Toole A. Mitochondria and cell death. Biochem Soc Trans. 2000;28:170–177.CrossRefPubMedGoogle Scholar
  41. 41.
    Kim JY, Jung KJ, Choi JS, Chung HY. Hesperetin: a potent antioxidant against peroxynitrite. Free Radic Res. 2004;38:761–769.CrossRefPubMedGoogle Scholar
  42. 42.
    Chen ZT, Chu HL, Chyau CC, Chu CC, Duh PD. Protective effects of sweet orange (Citrus sinensis) peel and their bioactive compounds on oxidative stress. Food Chem. 2012;135:2119–2127.CrossRefPubMedGoogle Scholar
  43. 43.
    Jung HA, Jung MJ, Kim JY, Chung HY, Choi JS. Inhibitory activity of flavonoids from Prunus davidiana and other flavonoids on total ROS and hydroxyl radical generation. Arch Pharm Res. 2003;26:809–815.CrossRefPubMedGoogle Scholar
  44. 44.
    Parhiz H, Roohbakhsh A, Soltani F, Rezaee R, Iranshahi M. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytother Res. 2015;29:323–331.CrossRefPubMedGoogle Scholar
  45. 45.
    Palit S, Kar S, Sharma G, Das PK. Hesperetin induces apoptosis in breast carcinoma by triggering accumulation of ROS and activation of ASK1/JNK pathway. J Cell Physiol. 2014. doi: 10.1002/jcp.24818.
  46. 46.
    Liu L, Fu J, Li T, et al. NG, a novel PABA/NO-based oleanolic acid derivative, induces human hepatoma cell apoptosis via a ROS/MAPK-dependent mitochondrial pathway. Eur J Pharmacol. 2012;691:61–68.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jixiang Zhang
    • 1
  • Dandan Wu
    • 1
  • Vikash
    • 1
  • Jia Song
    • 1
  • Jing Wang
    • 1
  • Jiasheng Yi
    • 1
  • Weiguo Dong
    • 1
    Email author
  1. 1.Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhanChina

Personalised recommendations