Skip to main content

Advertisement

Log in

MiR-199a-5p Loss Up-Regulated DDR1 Aggravated Colorectal Cancer by Activating Epithelial-to-Mesenchymal Transition Related Signaling

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Discoidin domain receptors1 (DDR1) is associated with tumor progression, and its dysregulated expression has been observed in many cancers.

Aim

We aim to explore molecular mechanism underlying the role of DDR1 in colorectal cancer development.

Methods

Immunohistochemistry and Western blot were applied to examine the DDR1 expression. Real-time RT-PCR and Western blot were performed to determine the expression of miR-199a-5p and DDR1. Luciferase reporter assay was used to determine whether DDR1 was a target of miR-199a-5p. Effects of miR-199a-5p and DDR1 on colorectal cell proliferation, colony formation, cell cycle progression, invasion and migration were then investigated. Western blot was used to determine the relative signal pathways.

Results

Increased DDR1 and decreased miR-199a-5p expression coexisted in CRC, knockdown of DDR1 or overexpression of miR-199a-5p both resulted in reduced colony formation, invasive and migratory capabilities of human CRC LOVE1 and LOVO cells. It was also found that overexpression of miR-199a-5p led to decreased DDR1, MMP2, N-cadherin and vimentin expression and increased E-cadherin expression in both CRC cell lines. However, down-regulation of miR-199a-5p resulted in the opposite effects. Dual luciferase reporter assay confirmed that miR-199a-5p could directly target DDR1 through binding to its 3′-UTR.

Conclusions

Our findings indicated that up-regulation of DDR1 induced by miR-199a-5p down-regulation may contribute to the development and progression of CRC, and this effect may be associated with increased invasiveness, at least in part, via activating the EMT-related signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  2. Longati P, Comoglio PM, Bardelli A. Receptor tyrosine kinases as therapeutic targets: the model of the MET oncogene. Curr Drug Targets. 2001;2:41–55.

    Article  CAS  PubMed  Google Scholar 

  3. Alves F, Vogel W, Mossie K, Millauer B, Hofler H, Ullrich A. Distinct structural characteristics of discoidin I subfamily receptor tyrosine kinases and complementary expression in human cancer. Oncogene. 1995;10:609–618.

    CAS  PubMed  Google Scholar 

  4. Johnson JD, Edman JC, Rutter WJ. A receptor tyrosine kinase found in breast carcinoma cells has an extracellular discoidin I-like domain. Proc Natl Acad Sci USA. 1993;90:5677–5681.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Shen Q, Cicinnati VR, Zhang X, et al. Role of microRNA-199a-5p and discoidin domain receptor 1 in human hepatocellular carcinoma invasion. Mol Cancer. 2010;9:227.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Ford CE, Lau SK, Zhu CQ, Andersson T, Tsao MS, Vogel WF. Expression and mutation analysis of the discoidin domain receptors 1 and 2 in non-small cell lung carcinoma. Br J Cancer. 2007;96:808–814.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Laval S, Butler R, Shelling AN, Hanby AM, Poulsom R, Ganesan TS. Isolation and characterization of an epithelial-specific receptor tyrosine kinase from an ovarian cancer cell line. Cell Growth Differ. 1994;5:1173–1183.

    CAS  PubMed  Google Scholar 

  8. Park HS, Kim KR, Lee HJ, et al. Overexpression of discoidin domain receptor 1 increases the migration and invasion of hepatocellular carcinoma cells in association with matrix metalloproteinase. Oncol Rep. 2007;18:1435–1441.

    CAS  PubMed  Google Scholar 

  9. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–297.

    Article  CAS  PubMed  Google Scholar 

  10. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.

    Article  CAS  PubMed  Google Scholar 

  11. Lai EC. Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet. 2002;30:363–364.

    Article  CAS  PubMed  Google Scholar 

  12. Schetter AJ, Harris CC. Alterations of microRNAs contribute to colon carcinogenesis. Semin Oncol. 2011;38:734–742.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kong Y, Bai PS, Sun H, Nan KJ, Chen NZ, Qi XG. The deoxycholic acid targets miRNA-dependent CAC1 gene expression in multidrug resistance of human colorectal cancer. Int J Biochem Cell Biol. 2012;44:2321–2332.

    Article  CAS  PubMed  Google Scholar 

  14. Arocho A, Chen B, Ladanyi M, Pan Q. Validation of the 2-DeltaDeltaCt calculation as an alternate method of data analysis for quantitative PCR of BCR-ABL P210 transcripts. Diagn Mol Pathol Am J Surg Pathol. 2006;15:56–61.

    Article  CAS  Google Scholar 

  15. Saadoun S, Papadopoulos MC, Hara-Chikuma M, Verkman AS. Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature. 2005;434:786–792.

    Article  CAS  PubMed  Google Scholar 

  16. L’Hote CG, Thomas PH, Ganesan TS. Functional analysis of discoidin domain receptor 1: effect of adhesion on DDR1 phosphorylation. FASEB J. 2002;16:234–236.

    PubMed  Google Scholar 

  17. Jian ZX, Sun J, Chen W, Jin HS, Zheng JH, Wu YL. Involvement of discoidin domain 1 receptor in recurrence of hepatocellular carcinoma by genome-wide analysis. Med Oncol. 2012;29:3077–3082.

    Article  CAS  PubMed  Google Scholar 

  18. Valencia K, Ormazabal C, Zandueta C, et al. Inhibition of collagen receptor discoidin domain receptor-1 (DDR1) reduces cell survival, homing, and colonization in lung cancer bone metastasis. Clin Cancer Res. 2012;18:969–980.

    Article  CAS  PubMed  Google Scholar 

  19. Miao L, Zhu S, Wang Y, et al. Discoidin domain receptor 1 is associated with poor prognosis of non-small cell lung cancer and promotes cell invasion via epithelial-to-mesenchymal transition. Med Oncol. 2013;30:626.

    Article  PubMed  Google Scholar 

  20. Shimada K, Nakamura M, Ishida E, et al. Prostate cancer antigen-1 contributes to cell survival and invasion though discoidin receptor 1 in human prostate cancer. Cancer Sci. 2008;99:39–45.

    CAS  PubMed  Google Scholar 

  21. Yang SH, Baek HA, Lee HJ, et al. Discoidin domain receptor 1 is associated with poor prognosis of non-small cell lung carcinomas. Oncol Rep. 2010;24:311–319.

    CAS  PubMed  Google Scholar 

  22. Kadera BE, Li L, Toste PA, et al. MicroRNA-21 in pancreatic ductal adenocarcinoma tumor-associated fibroblasts promotes metastasis. PLoS ONE. 2013;8:e71978.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Sandhu R, Rivenbark AG, Coleman WB. Loss of post-transcriptional regulation of DNMT3b by microRNAs: a possible molecular mechanism for the hypermethylation defect observed in a subset of breast cancer cell lines. Int J Oncol. 2012;41:721–732.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Fang JY, Lu J, Chen YX, Yang L. Effects of DNA methylation on expression of tumor suppressor genes and proto-oncogene in human colon cancer cell lines. World J Gastroenterol. 2003;9:1976–1980.

    CAS  PubMed  Google Scholar 

  25. Su SF, Chang YW, Andreu-Vieyra C, et al. miR-30d, miR-181a and miR-199a-5p cooperatively suppress the endoplasmic reticulum chaperone and signaling regulator GRP78 in cancer. Oncogene. 2013;32:4694–4701.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Wang W, Zhao LJ, Tan YX, Ren H, Qi ZT. Identification of deregulated miRNAs and their targets in hepatitis B virus-associated hepatocellular carcinoma. World J Gastroenterol. 2012;18:5442–5453.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Xu N, Zhang J, Shen C, et al. Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell. Biochem Biophys Res Commun. 2012;423:826–831.

    Article  CAS  PubMed  Google Scholar 

  28. Maeda M, Johnson KR, Wheelock MJ. Cadherin switching: essential for behavioral but not morphological changes during an epithelium-to-mesenchyme transition. J Cell Sci. 2005;118:873–887.

    Article  CAS  PubMed  Google Scholar 

  29. Kang Y, Massague J. Epithelial-mesenchymal transitions: twist in development and metastasis. Cell. 2004;118:277–279.

    Article  CAS  PubMed  Google Scholar 

  30. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–890.

    Article  CAS  PubMed  Google Scholar 

  31. Acloque H, Thiery JP, Nieto MA. The physiology and pathology of the EMT. Meeting on the epithelial-mesenchymal transition. EMBO Rep.. 2008;9:322–326.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Lee JM, Dedhar S, Kalluri R, Thompson EW. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol. 2006;172:973–981.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Zavadil J, Bottinger EP. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene. 2005;24:5764–5774.

    Article  CAS  PubMed  Google Scholar 

  34. Carico E, Radici M, Losito NS, et al. Expression of E-cadherin and alpha-catenin in T1 N0 laryngeal cancer. Anticancer Res. 2012;32:5245–5249.

    PubMed  Google Scholar 

  35. Lade-Keller J, Riber-Hansen R, Guldberg P, Schmidt H, Hamilton-Dutoit SJ, Steiniche T. E- to N-cadherin switch in melanoma is associated with decreased expression of phosphatase and tensin homolog and cancer progression. Br J Dermatol. 2013;169:618–628.

    Article  CAS  PubMed  Google Scholar 

  36. van Horssen R, Hollestelle A, Rens JA, Eggermont AM, Schutte M, Ten Hagen TL. E-cadherin promotor methylation and mutation are inversely related to motility capacity of breast cancer cells. Breast Cancer Res Treat. 2012;136:365–377.

    Article  PubMed  Google Scholar 

  37. Chen X, Wang Y, Xia H, et al. Loss of E-cadherin promotes the growth, invasion and drug resistance of colorectal cancer cells and is associated with liver metastasis. Mol Biol Rep. 2012;39:6707–6714.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was Supported by the Hunan science and technology planning project of Hunan Province. Grant Number: 2011SK3170.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziyuan Tang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10620_2014_3136_MOESM1_ESM.tif

Supplementary material 1 DDR1 knockdown of LOVO in LOVE1 cells. DDR1-shRNA significantly decreased DDR1 protein expression of DDR1 in LOVO and LOVE1 cells compared to control (Con) and the cells transfected with scramble shRNA (NC) detected by Western blot (TIFF 6024 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Y., Liu, J., Jiang, B. et al. MiR-199a-5p Loss Up-Regulated DDR1 Aggravated Colorectal Cancer by Activating Epithelial-to-Mesenchymal Transition Related Signaling. Dig Dis Sci 59, 2163–2172 (2014). https://doi.org/10.1007/s10620-014-3136-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-014-3136-0

Keywords

Navigation