Skip to main content

Advertisement

Log in

Protective Effect of Grape Seed and Skin Extract Against High-Fat Diet-Induced Liver Steatosis and Zinc Depletion in Rat

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Obesity is a tremendous public health problem, characterized by ectopic deposition of fat into non-adipose tissues as liver generating an oxidative stress that could lead to steato-hepatitis. Grape seed and skin extract (GSSE) is a complex mixture of polyphenolics exhibiting robust antioxidative properties.

Aim

We hypothesize that GSSE could protect the liver from fat-induced lipotoxicity and have a beneficial effect on liver function.

Methods

Hepatoprotective effect of GSSE was measured by using an experimental model of fat-induced rat liver steatosis. Male rats were fed a standard diet or a high-fat diet (HFD) during 6 weeks and treated or not with 500 mg/kg bw GSSE. Lipid deposition into the liver was assessed by triglyceride, cholesterol and phospholipid measurements. Fat-induced lipoperoxidation, carbonylation, depletion of glutathione and of antioxidant enzyme activities were used as oxidative stress markers with a special emphasis on transition metal distribution.

Results

HFD induced liver hypertrophy and inflammation as assessed by high liver transaminases. HFD also induced an oxidative stress characterized by increased lipid and protein oxidation, a drop in glutathione and antioxidant enzyme activities as glutathione peroxidase and superoxide dismutase and a drastic depletion in liver zinc. Importantly, GSSE prevented all the deleterious effects of HFD treatment.

Conclusions

Data suggest that GSSE could be used as a safe preventive agent against fat-induced liver lipotoxicity which could also have potential applications in other non-alcoholic liver diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Angulo P. Non alcoholic fatty liver disease. New Engl J Med. 2002;346:1221–1231.

    Article  CAS  PubMed  Google Scholar 

  2. Higdon JV, Frei B. Obesity and oxidative stress: a direct link to CVD? Arterioscl Throm Vas. 2003;23:365.

    Article  CAS  Google Scholar 

  3. Adams LA, Angulo P, Lindor KD. Nonalcoholic fatty liver disease. Can Med Assoc J. 2005;172:899–905.

    Article  Google Scholar 

  4. Uchiyama S, Shimizu T, Shirasawa T. CuZn-SOD deficiency causes ApoB degradation and induces hepatic lipid accumulation by impaired lipoprotein secretion in mice. J Biol Chem. 2006;281:31713–31719.

    Article  CAS  PubMed  Google Scholar 

  5. Bagchi D, Bagchi M, Stohs SJ, Ray SD, Sen CK, Preuss HG. Cellular protection with proanthocyanidins derived from grape seeds. Ann NY Acad Sci. 2002;957:260–270.

    Article  CAS  PubMed  Google Scholar 

  6. Bagchi D, Bagchi M, Stohs SJ, et al. Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention. Toxicology. 2000;7:187–197.

    Article  Google Scholar 

  7. Curin Y, Ritz MF, Andriantsitohaina R. Cellular mechanisms of the protective effect of polyphenols on the neurovascular unit in strokes. Cardiovasc Hematol Agents Med Chem. 2006;4:277–288.

    Article  CAS  PubMed  Google Scholar 

  8. Moreno DA, Ilic N, Poulev A, Brasaemle DL, Fried SK, Raskin I. Inhibitory effects of grape seed extract on lipases. Nutrition. 2003;19:876–879.

    Article  CAS  PubMed  Google Scholar 

  9. Bomser JA, Singletary KW, Wallig MA, Smith MA. Inhibition of TPA-induced tumor promotion in CD-1 mouse epidermis by a polyphenolic fraction from grape seeds. Cancer Lett. 1999;29:151–157.

    Article  Google Scholar 

  10. Agarwal C, Sharma Y, Agarwal R. Anticarcinogenic effect of a polyphenolic fraction isolated from grape seeds in human prostate carcinoma DU145 cells: modulation of mitogenic signaling and cell-cycle regulators and induction of G1 arrest and apoptosis. Mol Carcinog. 2000;28:129–138.

    Article  CAS  PubMed  Google Scholar 

  11. Charradi K, Elkahoui S, Karkouch I, Limam F, Ben Hassine F, Aouani E. Grape seed and skin extract prevents high-fat diet-induced brain lipotoxicity in rat. Neurochem Res. 2012;37:2004–2013.

    Article  CAS  PubMed  Google Scholar 

  12. National Research Council. Guide for the care and the use of laboratory animals, vol. 20. Bethesda: National Institute of Health; 1985:85.

    Google Scholar 

  13. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;226:497–509.

    CAS  PubMed  Google Scholar 

  14. Fossati P, Prencipe L. Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clin Chem. 1982;28:2077–2080.

    CAS  PubMed  Google Scholar 

  15. Allain CC, Poon LS, Chan CS, Richmond W, Fu PC. Enzymatic determination of total serum cholesterol. Clin Chem. 1974;20:470–475.

    CAS  PubMed  Google Scholar 

  16. Tietz NW. Text book of clinical chemistry. 3rd ed. Philadelphia: W.B. Saunders; 1999:819–884.

    Google Scholar 

  17. Mainard F, Madec Y. Cholesterol, phospholipid and apoB composition of LDL: comparison of precipitation and ultracentrifugation methods. Ann Biol Clin (Paris). 1986;44:618–623.

    CAS  Google Scholar 

  18. Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol. 1957;28:56–63.

    CAS  PubMed  Google Scholar 

  19. Draper HH, Hadley M. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol. 1990;186:421–431.

    Article  CAS  PubMed  Google Scholar 

  20. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990;186:467–478.

    Google Scholar 

  21. Hartree EF. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972;48:422–427.

    Article  CAS  PubMed  Google Scholar 

  22. Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969;27:502–522.

    Article  CAS  PubMed  Google Scholar 

  23. Nakamura K, Hosada S, Hayashi K. Purification and properties of rat liver glutathione peroxidase. Biochem Biophys Acta. 1974;358:251–261.

    CAS  Google Scholar 

  24. Aebi H. Methods of enzymatic analysis. 2e ed. New York: Chemia Weinheium; 1974.

    Google Scholar 

  25. Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247:3170–3175.

    CAS  PubMed  Google Scholar 

  26. Tachiyashiki K, Imaizumi K. Lowering and delaying actions of bovine bile on plasma ethanol levels in rats. J Nutr Sci Vitaminol. 1992;38:69–82.

    Article  CAS  PubMed  Google Scholar 

  27. Humbert G, Guingamp MF, Linden G. Method for the measurement of lipase activity in milk. J Dairy Res. 1997;64:465–469.

    Article  CAS  PubMed  Google Scholar 

  28. Stern J, Lewis WH. The colorimetric estimation of calcium in serum with ocresolphthalein complexone. Clin Chim Acta. 1957;2:576–580.

    Article  CAS  PubMed  Google Scholar 

  29. Kakinuma K, Yamaguchi T, Kaneda M, Shimada K, Tomita Y, Chance B. A determination of H2O2 release by the treatment of human blood polymorphonuclear leucocytes with myristate. J Biochem. 1979;86:87–95.

    CAS  PubMed  Google Scholar 

  30. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite and [15 N] nitrate in biological fluids. Anal Biochem. 1982;126:131–138.

    Article  CAS  PubMed  Google Scholar 

  31. Charradi K, Sebai H, Elkahoui S, Ben Hassine F, Limam F, Aouani E. Grape seed extract alleviates high fat diet-Induced obesity and heart dysfunction by preventing cardiac siderosis. Cardiovasc Toxicol. 2011;11:28–37.

    Article  PubMed  Google Scholar 

  32. Chiu HK, Qian K, Ogimoto K, et al. Mice lacking hepatic lipase are lean and protected against diet-induced obesity and hepatic steatosis. Endocrinology. 2010;151:993–1001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Hsu CL, Yen GC. Effect of gallic acid on high fat diet-induced dyslipidemia, hepatosteatosis, and oxidative stress in rats. Br J Nutr. 2007;98:727–735.

    Article  CAS  PubMed  Google Scholar 

  34. Charradi K, Elkahoui S, Karkouch I, et al. Grape seed and skin extract alleviates high-fat diet-induced renal lipotoxicity and prevents copper depletion in rat. Appl Physiol Nutr Metab. 2013;38:259–267.

    Article  CAS  PubMed  Google Scholar 

  35. Charradi K, Elkahoui S, Limam F, Aouani E. High-fat diet induced an oxidative stress in white adipose tissue and disturbed plasma transition metals in rat: prevention by grape seed and skin extract. J Physiol Sci. 2013. doi:10.1007/s12576-013-0283-6.

    PubMed  Google Scholar 

  36. Kennedy ML, Failla ML, Smith JC Jr. Influence of genetic obesity on tissue concentrations of zinc, copper, manganese and iron in mice. J Nutr. 1986;116:1432–1441.

    CAS  PubMed  Google Scholar 

  37. Kim S, Chao PY, Allen KG. Inhibition of elevated hepatic glutathione abolishes copper deficiency cholesterolemia. FASEB J. 1992;6:2467–2471.

    CAS  PubMed  Google Scholar 

  38. Lind PM, Olsén L, Lind L. Elevated circulating levels of copper and nickel are found in elderly subjects with left ventricular hypertrophy. Ecotoxicol Environ Saf. 2012;86:66–72.

    Article  CAS  PubMed  Google Scholar 

  39. Tajima S, Ikeda Y, Sawada K, et al. Iron reduction by deferoxamine leads to amelioration of adiposity via the regulation of oxidative stress and inflammation in obese and type 2 diabetes KKAy mice. Am J Physiol Endocrinol Metab. 2012;302:77–86.

    Article  Google Scholar 

  40. Xu G, Ahn J, Chang S, et al. Lipocalin-2 induces cardiomyocyte apoptosis by increasing intracellular iron accumulation. J Biol Chem. 2012;287:4808–4817.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Fordahl S, Cooney P, Qiu Y, Xie G, Jia W, Erikson KM. Waterborne manganese exposure alters plasma, brain, and liver metabolites accompanied by changes in stereotypic behaviors. Neurotoxicol Teratol. 2012;34:27–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Mohammad MK, Zhou Z, Cave M, Barve A, McClain CJ. Zinc and liver disease. Nutr Clin Pract. 2012;27:8–20.

    Article  PubMed  Google Scholar 

  43. Stamoulis I, Kouraklis G, Theocharis S. Zinc and the liver: an active interaction. Dig Dis Sci. 2007;52:1595–1612.

    Article  CAS  PubMed  Google Scholar 

  44. Eide DJ. The oxidative stress of zinc deficiency. Metallomics. 2011;3:1124–1129.

    Article  CAS  PubMed  Google Scholar 

  45. King JC, Shames DM, Woodhouse LR. Zinc homeostasis in humans. J Nutr. 2000;130:1360S–1366S.

    CAS  PubMed  Google Scholar 

  46. Brandt EG, Hellgren M, Brinck T, Bergman T, Edholm O. Molecular dynamics study of zinc binding to cysteines in a peptide mimic of the alcohol dehydrogenase structural zinc site. Phys Chem Chem Phys. 2009;11:975–983.

    Article  CAS  PubMed  Google Scholar 

  47. Ozata M, Mergen M, Oktenli C, et al. Increased oxidative stress and hypozincemia in male obesity. Clin Biochem. 2002;35:627–631.

    Article  CAS  PubMed  Google Scholar 

  48. Kang YJ, Zhou Z. Zinc prevention and treatment of alcoholic liver disease. Mol Aspects Med. 2005;26:391–404.

    Article  CAS  PubMed  Google Scholar 

  49. Milman N, Laursen J, Pødenphant J, Asnaes S. Trace elements in normal and cirrhotic human liver tissue. I. Iron, copper, zinc, selenium, manganese, titanium and lead measured by X-ray fluorescence spectrometry. Liver. 1986;6:111–117.

    Article  CAS  PubMed  Google Scholar 

  50. Indo Y, Nagata N, Higashi A, Matsuda I, Kashiwabara N, Nakashima I. Effects of dietary zinc deficiency on hepatic ornithine carbamoyltransferase and alcohol dehydrogenase activities in rats. J Pediatr Gastroenterol Nutr. 1985;4:268–273.

    Article  CAS  PubMed  Google Scholar 

  51. Kawashima Y, Someya Y, Sato S, et al. Dietary zinc-deficiency and its recovery responses in rat liver cytosolic alcohol dehydrogenase activities. J Toxicol Sci. 2011;36:101–108.

    Article  CAS  PubMed  Google Scholar 

  52. Quesada H, del Bas JM, Pajuelo D, et al. Grape seed proanthocyanidins correct dyslipidemia associated with a high-fat diet in rats and repress genes controlling lipogenesis and VLDL assembling in liver. Int J Obes (Lond). 2009;33:1007–1012.

    Article  CAS  Google Scholar 

  53. Castrillejo VM, Romero MM, Esteve M, et al. Antioxidant effects of a grapeseed procyanidin extract and oleoyl-estrone in obese Zucker rats. Nutrition. 2011;27:1172–1176.

    Article  CAS  PubMed  Google Scholar 

  54. Goodrich KM, Fundaro G, Griffin LE, et al. Chronic administration of dietary grape seed extract increases colonic expression of gut tight junction protein occluding and reduces fecal calprotectin: a secondary analysis in healthy Wistar furth rats. Nutr Res. 2012;32:787–794.

    Article  CAS  PubMed  Google Scholar 

  55. Khoshbaten M, Aliasgarzadeh A, Masnadi K, et al. Grape seed extract to improve liver function in patients with nonalcoholic fatty liver change. Saudi J Gastroenterol. 2010;16:194–197.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Park SH, Park TS, Cha YS. Grape seed extract (Vitis vinifera) partially reverses high fat diet-induced obesity in C57BL/6 J mice. Nutr Res Pract. 2008;2:227–233.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Quesada IM, Bustos M, Blay M, et al. Dietary catechins and procyanidins modulate zinc homeostasis in human HepG2 cells. J Nutr Biochem. 2011;22:153–163.

    Article  CAS  PubMed  Google Scholar 

  58. Kono T, Asama T, Chisato N, et al. Polaprezinc prevents ongoing thiocetamide-induced liver fibrosis in rats. Life Sci. 2012;90:122–130.

    Article  CAS  PubMed  Google Scholar 

  59. Oteiza PI, Mackenzie GG. Zinc, oxidant-triggered cell signaling, and human health. Mol Aspects Med. 2005;26:245–255.

    Article  CAS  PubMed  Google Scholar 

  60. Zhou Z, Liu J, Song Z, McClain CJ, Kang YJ. Zinc supplementation inhibits hepatic apoptosis in mice subjected to a long–term ethanol exposure. Exp Biol Med. 2008;233:540–548.

    Article  CAS  Google Scholar 

  61. Cousins RJ, Liuzzi JP, Lichten LA. Mammalian zinc transport, trafficking, and signals. J Biol Chem. 2006;281:24085–24089.

    Article  CAS  PubMed  Google Scholar 

  62. Franklin RB, Levy BA, Zou J, et al. ZIP14 zinc transporter down regulation and zinc depletion in the development and progression of hepatocellular cancer. J Gastrointest Cancer. 2012;43:249–257.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Gomez-Zorita S, Fernandez-Quintela A, Macarulla MT, et al. Resveratrol attenuates steatosis in obese Zucker rats by decreasing fatty acid availability and reducing oxidative stress. Br J Nutr. 2012;107:202–210.

    Article  CAS  PubMed  Google Scholar 

  64. Auger C, Teissedre PL, Gérain P, et al. Dietary wine phenolics catechin, quercetin and resveratrol efficiently protect hypercholesterolemic hamsters against aortic fatty streak accumulation. J Agric Food Chem. 2005;53:2015–2021.

    Article  CAS  PubMed  Google Scholar 

  65. Li Y, Wong K, Giles A, et al. Hepatic SIRT1 attenuates hepatic steatosis and controls energy balance in mice by inducing fibroblast growth factor 21. Gastroenterology. 2013;S0016–5085:01577-1. doi:10.1053/j.gastro.2013.10.059.

    Google Scholar 

  66. Ray S, Bagchi D, Lim PM, et al. Acute and long-term safety evaluation of a novel IH636 grape seed proanthocyanidin extract. Res Commun Mol Pathol Pharmacol. 2001;109:165–197.

    CAS  PubMed  Google Scholar 

  67. Abbas AM, Sakr HF. Effect of selenium and grape seed extract on indomethacin-induced gastric ulcers in rats. J Physiol Biochem. 2013. doi:10.1007/s13-0241-z.

    Google Scholar 

Download references

Acknowledgments

Financial support of the Tunisian Ministry of “Enseignement Supérieur, Recherche Scientifque et Technologie” is gratefully acknowledged.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamel Charradi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charradi, K., Elkahoui, S., Karkouch, I. et al. Protective Effect of Grape Seed and Skin Extract Against High-Fat Diet-Induced Liver Steatosis and Zinc Depletion in Rat. Dig Dis Sci 59, 1768–1778 (2014). https://doi.org/10.1007/s10620-014-3128-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-014-3128-0

Keywords

Navigation