Skip to main content

Advertisement

Log in

Molecular Therapies in Hepatocellular Carcinoma: What Can We Target?

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Numerous signaling pathways, such as Ras/Raf/MAPK, have been implicated in hepatic carcinogenesis. There are at least 35 combination therapy studies for advanced stage hepatocellular carcinoma (HCC) ongoing, and numerous reagents are being tested targeting novel signaling cascades. The management of HCC has changed substantially in recent times, and the successful development of sorafenib has prompted further expansion on molecular targeted therapies to potentially inhibit different pathways in hepatocarcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet. 2003;362:1907–1917.

    Article  PubMed  Google Scholar 

  2. El-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology. 2012;142:1264–1273.e1.

    Google Scholar 

  3. El-Serag HB. Hepatocellular carcinoma. N Engl J Med. 2011;365:1118–1127.

    Article  CAS  PubMed  Google Scholar 

  4. Sun B, Karin M. Obesity, inflammation, and liver cancer. J Hepatol. 2012;56:704–713.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Chen C, Yang H, Yang W, et al. Metabolic factors and risk of hepatocellular carcinoma by chronic hepatitis B/C infection: a follow-up study in Taiwan. Gastroenterology. 2008;135:111–121.

    Article  CAS  PubMed  Google Scholar 

  6. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348:1625–1638.

    Article  PubMed  Google Scholar 

  7. El-Serag HB, Tran T, Everhart JE. Diabetes increases the risk of chronic liver disease and hepatocellular carcinoma. Gastroenterology. 2004;126:460–468.

    Article  PubMed  Google Scholar 

  8. El-Serag HB, Hampel H, Javadi F. The association between diabetes and hepatocellular carcinoma: a systematic review of epidemiologic evidence. Clin Gastroenterol Hepatol. 2006;4:369–380.

    Article  PubMed  Google Scholar 

  9. Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–390.

    Article  CAS  PubMed  Google Scholar 

  10. El-Serag HB, Marrero JA, Rudolph L, Reddy KR. Diagnosis and treatment of hepatocellular carcinoma. Gastroenterology. 2008;134:1752–1763.

    Article  PubMed  Google Scholar 

  11. Forner A, Reig ME, de Lope CR, Bruix J. Current strategy for staging and treatment: the BCLC update and future prospects. Semin Liver Dis. 2010;30:61–74.

    Article  CAS  PubMed  Google Scholar 

  12. Bruix J, Sherman M. Management of hepatocellular carcinoma. Hepatol Baltim Md. 2005;42:1208–1236.

    Article  Google Scholar 

  13. Clark HP, Carson WF, Kavanagh PV, Ho CPH, Shen P, Zagoria RJ. Staging and current treatment of hepatocellular carcinoma1. Radiographics. 2005;25:S3–S23.

    Article  PubMed  Google Scholar 

  14. Lencioni R. Loco-regional treatment of hepatocellular carcinoma. Hepatology. 2010;52:762–773.

    Article  CAS  PubMed  Google Scholar 

  15. Llovet JM, Bruix J. Systematic review of randomized trials for unresectable hepatocellular carcinoma: chemoembolization improves survival. Hepatol Baltim Md. 2003;37:429–442.

    Article  CAS  Google Scholar 

  16. Burrel M, Reig M, Forner A, et al. Survival of patients with hepatocellular carcinoma treated by transarterial chemoembolisation (TACE) using Drug Eluting Beads. Implications for clinical practice and trial design. J Hepatol. 2012;56:1330–1335.

    Article  PubMed  Google Scholar 

  17. Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–390.

    Article  CAS  PubMed  Google Scholar 

  18. Cheng A-L, Kang Y-K, Chen Z, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009;10:25–34.

    Article  CAS  PubMed  Google Scholar 

  19. Llovet JM, Schwartz M, Mazzaferro V. Resection and liver transplantation for hepatocellular carcinoma. Semin Liver Dis. 2005;25:181–200.

    Article  PubMed  Google Scholar 

  20. European Association for the Study of the Liver, and European Organization for Research and Treatment of Cancer. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2012;56:908–943.

    Google Scholar 

  21. Villanueva A, Newell P, Chiang DY, Friedman SL, Llovet JM. Genomics and signaling pathways in hepatocellular carcinoma. Semin Liver Dis. 2007;27:55–76.

    Article  CAS  PubMed  Google Scholar 

  22. Laurent-Puig P, Zucman-Rossi J. Genetics of hepatocellular tumors. Oncogene. 2006;25:3778–3786.

    Article  CAS  PubMed  Google Scholar 

  23. Villanueva A, Llovet JM. Targeted therapies for hepatocellular carcinoma. Gastroenterology. 2011;140:1410–1426.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Kudo M. Current status of molecularly targeted therapy for hepatocellular carcinoma: clinical practice. Int J Clin Oncol. 2010;15:242–255.

    Article  CAS  PubMed  Google Scholar 

  25. Molina JR, Adjei AA. The Ras/Raf/MAPK pathway. J Thorac Oncol. 2006;1:7–9.

    Article  PubMed  Google Scholar 

  26. McCubrey JA, Steelman LS, Chappell WH, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta. 2007;1773:1263–1284.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Barbacid M. ras genes. Annu Rev Biochem. 1987;56:779–827.

    Article  CAS  PubMed  Google Scholar 

  28. Johnson BE, Heymach JV. Farnesyl transferase inhibitors for patients with lung cancer. Clin Cancer Res. 2004:10:4254s–4257s.

    Google Scholar 

  29. Caponigro F. Farnesyl transferase inhibitors: a major breakthrough in anticancer therapy? Naples, 12 April 2002. Anticancer Drugs. 2002;13:891–897.

    Article  CAS  PubMed  Google Scholar 

  30. Cantrell DA. GTPases and T cell activation. Immunol Rev. 2003;192:122–130.

    Article  CAS  PubMed  Google Scholar 

  31. Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141:1117–1134.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Marais R, Light Y, Paterson HF, Marshall CJ. Ras recruits Raf-1 to the plasma membrane for activation by tyrosine phosphorylation. EMBO J. 1995;14:3136–3145.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Vigil D, Cherfils J, Rossman KL, Der CJ. Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat Rev Cancer. 2010;10:842–857.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Chong H, Vikis HG, Guan K-L. Mechanisms of regulating the Raf kinase family. Cell Signal. 2003;15:463–469.

    Article  CAS  PubMed  Google Scholar 

  35. Meloche S, Pouysségur J. The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene. 2007;26:3227–3239.

    Article  CAS  PubMed  Google Scholar 

  36. Crews CM, Alessandrini A, Erikson RL. The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product. Science. 1992;258:478–480.

    Article  CAS  PubMed  Google Scholar 

  37. Santarpia L, Lippman SM, El-Naggar AK. Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opin Ther Targets. 2012;16:103–119.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Bos JL. ras oncogenes in human cancer: a review. Cancer Res. 1989;49:4682–4689.

    CAS  PubMed  Google Scholar 

  39. Takai Y, Sasaki T, Matozaki T. Small GTP-binding proteins. Physiol Rev. 2001;81:153–208.

    CAS  PubMed  Google Scholar 

  40. Bernards A. GAPs galore! A survey of putative Ras superfamily GTPase activating proteins in man and Drosophila. Biochim Biophys Acta. 2003;1603:47–82.

    CAS  PubMed  Google Scholar 

  41. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407:249–257.

    Article  CAS  PubMed  Google Scholar 

  42. Harris AL. Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2:38–47.

    Article  CAS  PubMed  Google Scholar 

  43. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 1993;362:841–844.

    Google Scholar 

  44. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997;18:4–25.

    Article  CAS  PubMed  Google Scholar 

  45. Fernández M, Semela D, Bruix J, Colle I, Pinzani M, Bosch J. Angiogenesis in liver disease. J Hepatol. 2009;50:604–620.

    Article  PubMed  Google Scholar 

  46. Schoenleber SJ, Kurtz DM, Talwalkar JA, Roberts LR, Gores GJ. Prognostic role of vascular endothelial growth factor in hepatocellular carcinoma: systematic review and meta-analysis. Br J Cancer. 2009;100:1385–1392.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Tseng P-L, Tai M-H, Huang C-C, et al. Overexpression of VEGF is associated with positive p53 immunostaining in hepatocellular carcinoma (HCC) and adverse outcome of HCC patients. J Surg Oncol. 2008;98:349–357.

    Article  PubMed  Google Scholar 

  48. Gavert N, Ben-Ze’ev A. Beta-Catenin signaling in biological control and cancer. J Cell Biochem. 2007;102:820–828.

    Google Scholar 

  49. Giles RH, van Es JH, Clevers H. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta. 2003;1653:1–24.

    CAS  PubMed  Google Scholar 

  50. Lee HC, Kim M, Wands JR. Wnt/Frizzled signaling in hepatocellular carcinoma. Front Biosci. 2006;11:1901–1915.

    Article  CAS  PubMed  Google Scholar 

  51. Zucman-Rossi J, Jeannot E, Nhieu JTV, et al. Genotype-phenotype correlation in hepatocellular adenoma: new classification and relationship with HCC. Hepatol Baltim Md. 2006;43:515–524.

    Article  CAS  Google Scholar 

  52. Mínguez B, Tovar V, Chiang D, Villanueva A, Llovet JM. Pathogenesis of hepatocellular carcinoma and molecular therapies. Curr Opin Gastroenterol. 2009;25:186–194.

    Article  PubMed  Google Scholar 

  53. Stanton BZ, Peng LF. Small-molecule modulators of the Sonic Hedgehog signaling pathway. Mol BioSyst. 2010;6:44–54.

    Article  CAS  PubMed  Google Scholar 

  54. Yin L, Velazquez OC, Liu Z-J. Notch signaling: emerging molecular targets for cancer therapy. Biochem Pharmacol. 2010;80:690–701.

    Article  CAS  PubMed  Google Scholar 

  55. Wang Z, Zhang Y, Li Y, Banerjee S, Liao J, Sarkar FH. Down-regulation of Notch-1 contributes to cell growth inhibition and apoptosis in pancreatic cancer cells. Mol Cancer Ther. 2006;5:483–493.

    Article  CAS  PubMed  Google Scholar 

  56. Zhao B, Wei X, Li W, et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007;21:2747–2761.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Yang J-M, Chen W-S, Liu Z-P, Luo Y-H, Liu W–W. Effects of insulin-like growth factors-IR and -IIR antisense gene transfection on the biological behaviors of SMMC-7721 human hepatoma cells. J Gastroenterol Hepatol. 2003;18:296–301.

    Article  CAS  PubMed  Google Scholar 

  58. Höpfner M, Huether A, Sutter AP, Baradari V, Schuppan D, Scherübl H. Blockade of IGF-1 receptor tyrosine kinase has antineoplastic effects in hepatocellular carcinoma cells. Biochem Pharmacol. 2006;71:1435–1448.

    Article  PubMed  Google Scholar 

  59. Zhu AX. New agents on the horizon in hepatocellular carcinoma. Ther Adv Med Oncol. 2013;5:41–50.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Chappell WH, Steelman LS, Long JM, et al. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget. 2011;2:135–164.

    PubMed Central  PubMed  Google Scholar 

  61. Gedaly R, Angulo P, Hundley J, Daily MF, Chen C, Evers BM. PKI-587 and sorafenib targeting PI3 K/AKT/mTOR and Ras/Raf/MAPK pathways synergistically inhibit HCC cell proliferation. J Surg Res. 2012;176:542–548.

    Article  CAS  PubMed  Google Scholar 

  62. Gedaly R, Angulo P, Chen C, et al. The role of PI3 K/mTOR inhibition in combination with sorafenib in hepatocellular carcinoma treatment. Anticancer Res. 2012;32:2531–2536.

    CAS  PubMed  Google Scholar 

  63. Home-ClinicalTrials.gov. http://clinicaltrials.gov/. Epub. 02/13/2013.

  64. Lachenmayer A, Toffanin S, Cabellos L, et al. Combination therapy for hepatocellular carcinoma: additive preclinical efficacy of the HDAC inhibitor panobinostat with sorafenib. J Hepatol. 2012;56:1343–1350.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Galuppo R, Maynard E, Shah M, Daily MF, Chen C, Spear BT, Gedaly R. Synergistic inhibition of HCC and liver cancer stem cell proliferation by targeting Ras/Raf/MAKP and Wnt/β-Catenin Pathways. Anticancer Res (in press).

Download references

Acknowledgments

The project described was supported by the National Center for Research Resources and the National Center for Advancing Translational Sciences, National Institutes of Health, through Grant UL1TR000117. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Gedaly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galuppo, R., Ramaiah, D., Ponte, O.M. et al. Molecular Therapies in Hepatocellular Carcinoma: What Can We Target?. Dig Dis Sci 59, 1688–1697 (2014). https://doi.org/10.1007/s10620-014-3058-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-014-3058-x

Keywords

Navigation