Skip to main content

Advertisement

Log in

microRNA: A Promising Diagnostic Biomarker and Therapeutic Target for Hepatocellular Carcinoma

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

microRNAs constitute a novel class of small, non-coding RNAs that negatively regulate gene expression via translational inhibition or mRNA degradation. Aberrant miRNA expression has been implicated in the initiation, progression, and metastasis of hepatocellular carcinoma (HCC). It is well-documented that miRNAs function as either tumor suppressor genes or oncogenes in the development and progression of HCC. Additionally, substantial evidence suggests that unique miRNA signatures can serve as valuable diagnostic and prognostic biomarkers for HCC. Interestingly, certain subsets of miRNAs have also been identified as potential therapeutic targets for HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN. Int J Cancer. 2008;2010:2893–2917.

    Google Scholar 

  2. Gomaa AI, Khan SA, Toledano MB, Waked I, Taylor-Robinson SD. Hepatocellular carcinoma: epidemiology, risk factors and pathogenesis. World J Gastroenterol. 2008;14:4300–4308.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet. 2012;379:1245–1255.

    Article  PubMed  Google Scholar 

  4. Ray K. Liver cancer: the promise of new approaches in the management of hepatocellular carcinoma—adding to the toolbox? Nat Rev Gastroenterol Hepatol. 2013;10:195.

    Article  PubMed  Google Scholar 

  5. Trinchet JC, Chaffaut C, Bourcier V, et al. Ultrasonographic surveillance of hepatocellular carcinoma in cirrhosis: a randomized trial comparing 3- and 6-month periodicities. Hepatology. 2011;54:1987–1997.

    Article  PubMed  Google Scholar 

  6. Qu KZ, Zhang K, Li H, Afdhal NH, Albitar M. Circulating microRNAs as biomarkers for hepatocellular carcinoma. J Clin Gastroenterol. 2011;45:355–360.

    Article  CAS  PubMed  Google Scholar 

  7. Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–355.

    Article  CAS  PubMed  Google Scholar 

  8. Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004;18:3016–3027.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003;17:3011–3016.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 2005;123:631–640.

    Article  CAS  PubMed  Google Scholar 

  11. Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA. 2004;101:2999–3004.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302:1–12.

    Article  CAS  PubMed  Google Scholar 

  13. Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol. 2007;23:175–205.

    Article  CAS  PubMed  Google Scholar 

  14. Huang S, He X. The role of microRNAs in liver cancer progression. Br J Cancer. 2011;104:235–240.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Danial NN. BCL-2 family proteins: critical checkpoints of apoptotic cell death. Clin Cancer Res. 2007;13:7254–7263.

    Article  CAS  PubMed  Google Scholar 

  16. Li Y, Tan W, Neo TW, et al. Role of the miR-106b-25 microRNA cluster in hepatocellular carcinoma. Cancer Sci. 2009;100:1234–1242.

    Article  CAS  PubMed  Google Scholar 

  17. Gramantieri L, Fornari F, Ferracin M, et al. MicroRNA-221 targets Bmf in hepatocellular carcinoma and correlates with tumor multifocality. Clin Cancer Res. 2009;15:5073–5081.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Xiong Y, Fang JH, Yun JP, et al. Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology. 2010;51:836–845.

    CAS  PubMed  Google Scholar 

  19. Su H, Yang JR, Xu T, et al. MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res. 2009;69:1135–1142.

    Article  CAS  PubMed  Google Scholar 

  20. Lin CJ, Gong HY, Tseng HC, Wang WL, Wu JL. miR-122 targets an anti-apoptotic gene, Bcl-w, in human hepatocellular carcinoma cell lines. Biochem Biophys Res Commun. 2008;375:315–320.

    Article  CAS  PubMed  Google Scholar 

  21. Garofalo M, Di Leva G, Romano G, et al. miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell. 2009;16:498–509.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Robertson SC, Tynan JA, Donoghue DJ. RTK mutations and human syndromes: when good receptors turn bad. Trends Genet. 2000;16:265–271.

    Article  CAS  PubMed  Google Scholar 

  23. Zhao L, Vogt PK. Class I PI3K in oncogenic cellular transformation. Oncogene. 2008;27:5486–5496.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Ueki T, Fujimoto J, Suzuki T, Yamamoto H, Okamoto E. Expression of hepatocyte growth factor and its receptor c-met proto-oncogene in hepatocellular carcinoma. Hepatology. 1997;25:862–866.

    Article  CAS  PubMed  Google Scholar 

  25. Datta J, Kutay H, Nasser MW, et al. Methylation mediated silencing of MicroRNA-1 gene and its role in hepatocellular carcinogenesis. Cancer Res. 2008;68:5049–5058.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Salvi A, Sabelli C, Moncini S, et al. MicroRNA-23b mediates urokinase and c-met downmodulation and a decreased migration of human hepatocellular carcinoma cells. FEBS J. 2009;276:2966–2982.

    Article  CAS  PubMed  Google Scholar 

  27. Li N, Fu H, Tie Y, et al. miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Lett. 2009;275:44–53.

    Article  CAS  PubMed  Google Scholar 

  28. Jang JY, Lee YS, Jeon YK, Lee K, Jang JJ, Kim CW. ANT2 suppression by shRNA restores miR-636 expression, thereby downregulating Ras and inhibiting tumorigenesis of hepatocellular carcinoma. Exp Mol Med. 2013;45:e3.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296:1655–1657.

    Article  CAS  PubMed  Google Scholar 

  30. Vinciguerra M, Sgroi A, Veyrat-Durebex C, Rubbia-Brandt L, Buhler LH, Foti M. Unsaturated fatty acids inhibit the expression of tumor suppressor phosphatase and tensin homolog (PTEN) via microRNA-21 up-regulation in hepatocytes. Hepatology. 2009;49:1176–1184.

    Article  CAS  PubMed  Google Scholar 

  31. Matsushime H, Quelle DE, Shurtleff SA, Shibuya M, Sherr CJ, Kato JY. D-type cyclin-dependent kinase activity in mammalian cells. Mol Cell Biol. 1994;14:2066–2076.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Resnitzky D, Reed SI. Different roles for cyclins D1 and E in regulation of the G1-to-S transition. Mol Cell Biol. 1995;15:3463–3469.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Bloom J, Cross FR. Multiple levels of cyclin specificity in cell-cycle control. Nat Rev Mol Cell Biol. 2007;8:149–160.

    Article  CAS  PubMed  Google Scholar 

  34. Kota J, Chivukula RR, O’Donnell KA, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 2009;137:1005–1017.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Xu T, Zhu Y, Xiong Y, Ge YY, Yun JP, Zhuang SM. MicroRNA-195 suppresses tumorigenicity and regulates G1/S transition of human hepatocellular carcinoma cells. Hepatology. 2009;50:113–121.

    Article  CAS  PubMed  Google Scholar 

  36. Xiao F, Zhang W, Chen L, et al. MicroRNA-503 inhibits the G1/S transition by downregulating cyclin D3 and E2F3 in hepatocellular carcinoma. J Transl Med. 2013;11:195.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Fornari F, Gramantieri L, Ferracin M, et al. MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene. 2008;27:5651–5661.

    Article  CAS  PubMed  Google Scholar 

  38. Chen J, Zhang B, Wong N, et al. Sirtuin 1 is upregulated in a subset of hepatocellular carcinomas where it is essential for telomere maintenance and tumor cell growth. Cancer Res. 2011;71:4138–4149.

    Article  CAS  PubMed  Google Scholar 

  39. Bae HJ, Noh JH, Kim JK, et al. MicroRNA-29c functions as a tumor suppressor by direct targeting oncogenic SIRT1 in hepatocellular carcinoma. Oncogene. 2013. doi:10.1038/onc.2013.216.

  40. Lim L, Balakrishnan A, Huskey N, et al. MicroRNA-494 within an oncogenic microRNA megacluster regulates G1/S transition in liver tumorigenesis through suppression of mutated in colorectal cancer. Hepatology. 2014;59:202–215.

    Google Scholar 

  41. Matsumine A, Senda T, Baeg GH, et al. MCC, a cytoplasmic protein that blocks cell cycle progression from the G0/G1 to S phase. J Biol Chem. 1996;271:10341–10346.

    Article  CAS  PubMed  Google Scholar 

  42. Liu RF, Xu X, Huang J, et al. Down-regulation of miR-517a and miR-517c promotes proliferation of hepatocellular carcinoma cells via targeting Pyk2. Cancer Lett. 2013;329:164–173.

    Article  CAS  PubMed  Google Scholar 

  43. Wong QW, Lung RW, Law PT, et al. MicroRNA-223 is commonly repressed in hepatocellular carcinoma and potentiates expression of Stathmin1. Gastroenterology. 2008;135:257–269.

    Article  CAS  PubMed  Google Scholar 

  44. Tsai WC, Hsu PW, Lai TC, et al. MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology. 2009;49:1571–1582.

    Article  CAS  PubMed  Google Scholar 

  45. Ji J, Zhao L, Budhu A, et al. Let-7g targets collagen type I alpha2 and inhibits cell migration in hepatocellular carcinoma. J Hepatol. 2010;52:690–697.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Yao J, Liang L, Huang S, et al. MicroRNA-30d promotes tumor invasion and metastasis by targeting Galphai2 in hepatocellular carcinoma. Hepatology. 2010;51:846–856.

    CAS  PubMed  Google Scholar 

  47. Ding J, Huang S, Wu S, et al. Gain of miR-151 on chromosome 8q24.3 facilitates tumour cell migration and spreading through downregulating RhoGDIA. Nat Cell Biol. 2010;12:390–399.

    Article  CAS  PubMed  Google Scholar 

  48. Dovas A, Couchman JR. RhoGDI: multiple functions in the regulation of Rho family GTPase activities. Biochem J. 2005;390:1–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Gilad S, Meiri E, Yogev Y, et al. Serum microRNAs are promising novel biomarkers. PLoS ONE. 2008;3:e3148.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18:997–1006.

    Article  CAS  PubMed  Google Scholar 

  51. Xi Y, Nakajima G, Gavin E, et al. Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. RNA. 2007;13:1668–1674.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Li LM, Hu ZB, Zhou ZX, et al. Serum microRNA profiles serve as novel biomarkers for HBV infection and diagnosis of HBV-positive hepatocarcinoma. Cancer Res. 2010;70:9798–9807.

    Article  CAS  PubMed  Google Scholar 

  53. Zhou J, Yu L, Gao X, et al. Plasma microRNA panel to diagnose hepatitis B virus-related hepatocellular carcinoma. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29:4781–4788.

    Article  CAS  Google Scholar 

  54. Varnholt H, Drebber U, Schulze F, et al. MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. Hepatology. 2008;47:1223–1232.

    Article  CAS  PubMed  Google Scholar 

  55. Ladeiro Y, Couchy G, Balabaud C, et al. MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations. Hepatology. 2008;47:1955–1963.

    Article  CAS  PubMed  Google Scholar 

  56. Yamashita T, Ji J, Budhu A, et al. EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology. 2009;136:1012–1024.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Ji J, Yamashita T, Budhu A, et al. Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells. Hepatology. 2009;50:472–480.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Borel F, Konstantinova P, Jansen PL. Diagnostic and therapeutic potential of miRNA signatures in patients with hepatocellular carcinoma. J Hepatol. 2012;56:1371–1383.

    Article  CAS  PubMed  Google Scholar 

  59. Qin LX, Tang ZY. The prognostic molecular markers in hepatocellular carcinoma. World J Gastroenterol. 2002;8:385–392.

    CAS  PubMed  Google Scholar 

  60. Tannapfel A, Grund D, Katalinic A, et al. Decreased expression of p27 protein is associated with advanced tumor stage in hepatocellular carcinoma. Int J Cancer. 2000;89:350–355.

    Article  CAS  PubMed  Google Scholar 

  61. Watanabe J, Kushihata F, Honda K, et al. Prognostic significance of Bcl-xL in human hepatocellular carcinoma. Surgery. 2004;135:604–612.

    Article  PubMed  Google Scholar 

  62. Ura S, Honda M, Yamashita T, et al. Differential microRNA expression between hepatitis B and hepatitis C leading disease progression to hepatocellular carcinoma. Hepatology. 2009;49:1098–1112.

    Article  CAS  PubMed  Google Scholar 

  63. Budhu A, Jia HL, Forgues M, et al. Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology. 2008;47:897–907.

    Article  CAS  PubMed  Google Scholar 

  64. Nakamura M, Nagano H, Marubashi S, et al. Pilot study of combination chemotherapy of S-1, a novel oral DPD inhibitor, and interferon-alpha for advanced hepatocellular carcinoma with extrahepatic metastasis. Cancer. 2008;112:1765–1771.

    Article  CAS  PubMed  Google Scholar 

  65. Nagano H, Miyamoto A, Wada H, et al. Interferon-alpha and 5-fluorouracil combination therapy after palliative hepatic resection in patients with advanced hepatocellular carcinoma, portal venous tumor thrombus in the major trunk, and multiple nodules. Cancer. 2007;110:2493–2501.

    Article  CAS  PubMed  Google Scholar 

  66. Kubo S, Nishiguchi S, Hirohashi K, et al. Effects of long-term postoperative interferon-alpha therapy on intrahepatic recurrence after resection of hepatitis C virus-related hepatocellular carcinoma. A randomized, controlled trial. Ann Intern Med. 2001;134:963–967.

    Article  CAS  PubMed  Google Scholar 

  67. Shiratori Y, Shiina S, Teratani T, et al. Interferon therapy after tumor ablation improves prognosis in patients with hepatocellular carcinoma associated with hepatitis C virus. Ann Intern Med. 2003;138:299–306.

    Article  PubMed  Google Scholar 

  68. Ji J, Shi J, Budhu A, et al. MicroRNA expression, survival, and response to interferon in liver cancer. New Eng J Med. 2009;361:1437–1447.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Tomimaru Y, Eguchi H, Nagano H, et al. MicroRNA-21 induces resistance to the anti-tumour effect of interferon-alpha/5-fluorouracil in hepatocellular carcinoma cells. Br J Cancer. 2010;103:1617–1626.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Tomokuni A, Eguchi H, Tomimaru Y, et al. miR-146a suppresses the sensitivity to interferon-alpha in hepatocellular carcinoma cells. Biochem Biophys Res Commun. 2011;414:675–680.

    Article  CAS  PubMed  Google Scholar 

  71. Ye QH, Qin LX, Forgues M, et al. Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nat Med. 2003;9:416–423.

    Article  CAS  PubMed  Google Scholar 

  72. Sun BS, Dong QZ, Ye QH, et al. Lentiviral-mediated miRNA against osteopontin suppresses tumor growth and metastasis of human hepatocellular carcinoma. Hepatology. 2008;48:1834–1842.

    Article  CAS  PubMed  Google Scholar 

  73. Arzumanyan A, Reis HM, Feitelson MA. Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat Rev Cancer. 2013;13:123–135.

    Article  CAS  PubMed  Google Scholar 

  74. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science. 2005;309:1577–1581.

    Article  CAS  PubMed  Google Scholar 

  75. Lanford RE, Hildebrandt-Eriksen ES, Petri A, et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science. 2010;327:198–201.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Wang B, Hsu SH, Majumder S, et al. TGFbeta-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3. Oncogene. 2010;29:1787–1797.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Fornari F, Gramantieri L, Giovannini C, et al. MiR-122/cyclin G1 interaction modulates p53 activity and affects doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res. 2009;69:5761–5767.

    Article  CAS  PubMed  Google Scholar 

  78. Bai S, Nasser MW, Wang B, et al. MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. J Biol Chem. 2009;284:32015–32027.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Van Rooij E. The art of microRNA research. Circ Res. 2011;108:219–234.

    Article  PubMed  Google Scholar 

  80. Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003;4:346–358.

    Article  CAS  PubMed  Google Scholar 

  81. Sobrevals L, Enguita M, Rodriguez C, et al. AAV vectors transduce hepatocytes in vivo as efficiently in cirrhotic as in healthy rat livers. Gene Ther. 2012;19:411–417.

    Article  CAS  PubMed  Google Scholar 

  82. Turner P, Petch A, Al-Rubeai M. Encapsulation of viral vectors for gene therapy applications. Biotechnol Prog. 2007;23:423–429.

    Article  CAS  PubMed  Google Scholar 

  83. Kim J, Kim PH, Kim SW, Yun CO. Enhancing the therapeutic efficacy of adenovirus in combination with biomaterials. Biomaterials. 2012;33:1838–1850.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Yilmazer A, Al-Jamal WT, Van den Bossche J, Kostarelos K. The effect of artificial lipid envelopment of Adenovirus 5 (Ad5) on liver de-targeting and hepatotoxicity. Biomaterials. 2013;34:1354–1363.

    Article  CAS  PubMed  Google Scholar 

  85. Pereira DM, Rodrigues PM, Borralho PM, Rodrigues CM. Delivering the promise of miRNA cancer therapeutics. Drug Discov Today. 2013;18:282–289.

    Article  CAS  PubMed  Google Scholar 

  86. Takeshita F, Minakuchi Y, Nagahara S, et al. Efficient delivery of small interfering RNA to bone-metastatic tumors by using atelocollagen in vivo. Proc Natl Acad Sci USA. 2005;102:12177–12182.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Germer K, Leonard M, Zhang X. RNA aptamers and their therapeutic and diagnostic applications. Int J Biochem Mol Biol. 2013;4:27–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Ahmad ZA, Yeap SK, Ali AM, Ho WY, Alitheen NB, Hamid M. scFv antibody: principles and clinical application. Clin Dev Immunol. 2012;2012:980250.

    Article  PubMed Central  PubMed  Google Scholar 

  89. O’Neill LA, Sheedy FJ, McCoy CE. MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol. 2011;11:163–175.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Yang, W., Lou, L. et al. microRNA: A Promising Diagnostic Biomarker and Therapeutic Target for Hepatocellular Carcinoma. Dig Dis Sci 59, 1099–1107 (2014). https://doi.org/10.1007/s10620-013-3006-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-013-3006-1

Keywords

Navigation