Skip to main content

Advertisement

Log in

STAT3 and Importins Are Novel Mediators of Early Molecular and Cellular Responses in Experimental Duodenal Ulceration

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Objectives

Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that directly upregulates VEGF, Ref-1, p21, and anti-apoptotic genes such as Bcl-xL. In this study, we hypothesized that STAT3 signaling is activated and provides a critical protective role that is required for enterocyte survival during the early phases of cysteamine-induced duodenal ulcers.

Methods

We studied the effect of inhibition of STAT3 activity on cysteamine-induced duodenal ulcers in rats and egr-1 knockout mice using STAT3/DNA binding assay, immunohistochemistry, immunoblot, and quantitative reverse transcriptase PCR analyses.

Results

We found that G-quartet oligodeoxynucleotides T40214, a specific inhibitor of STAT3/DNA binding, aggravated cysteamine-induced duodenal ulcers in rats 2.8-fold (p < 0.05). In the pre-ulcerogenic stage, cysteamine induced STAT3 tyrosine phosphorylation, its translocation to nuclei, an increased expression and nuclear translocation of importin α and β in the rat duodenal mucosa. Cysteamine enhanced the binding of STAT3 to its DNA consensus sequences at 6, 12, and 24 h after cysteamine by 1.5-, 1.8-, and 3.5-fold, respectively, and activated the expression of STAT3 target genes such as VEGF, Bcl-xL, Ref-1, and STAT3-induced feedback inhibitor, a suppressor of cytokine signaling 3. We also demonstrated that egr-1 knockout mice, which are more susceptible to cysteamine-induced duodenal ulcers, had lower levels of STAT3 expression, its phosphorylation, expression of importin α or β, and STAT3/DNA binding than wild-type mice in response to cysteamine.

Conclusions

Thus, STAT3 represents an important new molecular mechanism in experimental duodenal ulceration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Manuel D, Cutler A, Goldstein J, et al. Decreasing prevalence combined with increasing eradication of Helicobacter pylori infection in the United States has not resulted in fewer hospital admissions for peptic ulcer disease-related complications. Aliment Pharmacol Ther. 2007;25:1423–1427.

    Article  CAS  PubMed  Google Scholar 

  2. Calam J. Clinical science of Helicobacter pylori infection: ulcers and NSAIDs. Br Med Bull. 1998;54:55–62.

    Article  CAS  PubMed  Google Scholar 

  3. Hobsley M, Tovey FI, Holton J. Controversies in the Helicobacter pylori/duodenal ulcer story. Trans R Soc Trop Med Hyg. 2008;102:1171–1175.

    Article  PubMed  Google Scholar 

  4. Sandor Z, Vincze A, Jadus M et al. Effect of Vac+ and Vac− Helicobacter pylori supernatants on the bioactivity of basic fibroblast growth factor and platelet-derived growth factor in vitro. Gastroenterology. 1996;110:A249.

    Google Scholar 

  5. Szabo S, Shing Y, Fox J, et al. Inactivation of basic fibroblast growth factor (bFGF) by gastric Helicobacter and not by E. coli. Gastroenterology. 1994;106:A190.

    Google Scholar 

  6. Wong GL, Wong VW, Chan Y, et al. High incidence of mortality and recurrent bleeding in patients with Helicobacter pylori-negative idiopathic bleeding ulcers. Gastroenterology. 2009;137:525–5231.

    Article  PubMed  Google Scholar 

  7. Akira S. IL-6-regulated transcription factors. Int J Biochem Cell Biol. 1997;29:1401–1418.

    Article  CAS  PubMed  Google Scholar 

  8. Boccaccio C, Ando M, Tamagnone L, et al. Induction of epithelial tubules by growth factor HGF depends on the STAT pathway. Nature. 1998;391:285–288.

    Article  CAS  PubMed  Google Scholar 

  9. Darnell JE Jr. STATs and gene regulation. Science. 1997;277:1630–1635.

    Article  CAS  PubMed  Google Scholar 

  10. Gong G, Waris G, Tanveer R, et al. Human hepatitis C virus NS5A protein alters intracellular calcium levels, induces oxidative stress, and activates STAT-3 and NF-kappa B. Proc Natl Acad Sci USA. 2001;98:9599–9604.

    Article  CAS  PubMed  Google Scholar 

  11. Waris G, Turkson J, Hassanein T, et al. Hepatitis C virus (HCV) constitutively activates STAT-3 via oxidative stress: role of STAT-3 in HCV replication. J Virol. 2005;79:1569–1580.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Akira S, Nishio Y, Inoue M, et al. Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gpl30-mediated signaling pathway. Cell. 1994;77:63–71.

    Article  CAS  PubMed  Google Scholar 

  13. Kaptein A, Paillard V, Saunders M. Dominant negative stat3 mutant inhibits interleukin-6-induced Jak-STAT signal transduction. J Biol Chem. 1996;271:5961–5964.

    Article  CAS  PubMed  Google Scholar 

  14. Akira S. Roles of STAT3 defined by tissue-specific gene targeting. Oncogene. 2000;19:2607–2611.

    Article  CAS  PubMed  Google Scholar 

  15. Ihle JN. The Janus protein tyrosine kinase family and its role in cytokine signaling. Adv Immunol. 1995;60:1–35.

    Article  CAS  PubMed  Google Scholar 

  16. Nelson KL, Rogers JA, Bowman TL, et al. Activation of STAT3 by the c-Fes protein-tyrosine kinase. J Biol Chem. 1998;273:7072–7077.

    Article  CAS  PubMed  Google Scholar 

  17. Schindler C, Darnell JE Jr. Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu Rev Biochem. 1995;64:621–651.

    Article  CAS  PubMed  Google Scholar 

  18. Ushijima R, Sakaguchi N, Kano A, et al. Extracellular signal-dependent nuclear import of STAT3 is mediated by various importin as. Biochem Biophys Res Commun. 2005;330:880–886.

    Article  CAS  PubMed  Google Scholar 

  19. Cimica V, Chen HC, Iyer JK, et al. Dynamics of the STAT3 transcription factor: nuclear import dependent on Ran and importin-β1. PLoS ONE. 2011;6:e20188.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Macara IG. Transport into and out of the nucleus. Microbiol Mol Biol Rev. 2001;65:570–594.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Ohno M, Fornerod M, Mattaj IW. Nucleocytoplasmic transport: the last 200 nanometers. Cell. 1998;92:327–336.

    Article  CAS  PubMed  Google Scholar 

  22. Zhuang L, Lee CS, Scolyer RA, et al. Mcl-1, Bcl-XL and Stat3 expression are associated with progression of melanoma whereas Bcl-2, AP-2 and MITF levels decrease during progression of melanoma. Mod Pathol. 2007;20:416–426.

    Article  CAS  PubMed  Google Scholar 

  23. Niu G, Wright KL, Huang M, et al. Constitutive Stat3 activity upregulates VEGF expression and tumor angiogenesis. Oncogene. 2002;21:2000–2008.

    Article  CAS  PubMed  Google Scholar 

  24. Yahata Y, Shirakata Y, Tokumaru S, et al. Nuclear translocation of phosphorylated STAT3 is essential for vascular endothelial growth factor-induced human dermal microvascular endothelial cell migration and tube formation. J Biol Chem. 2003;278:40026–40031.

    Article  CAS  PubMed  Google Scholar 

  25. Xie TX, Huang FJ, Aldape KD, et al. Activation of Stat3 in human melanoma promotes brain metastasis. Cancer Res. 2006;66:3188–3196.

    Article  CAS  PubMed  Google Scholar 

  26. Matthews JR, Sansom OJ, Clarke AR. Absolute requirement for STAT3 function in small-intestine crypt stem cell survival. Cell Death Differ. 2011;18:1934–1943.

    Article  CAS  PubMed  Google Scholar 

  27. Jing N, Zhu Q, Yuan P, et al. Targeting signal transducer and activator of transcription 3 with G-quartet oligonucleotides: a potential novel therapy for head and neck cancer. Mol Cancer Ther. 2006;5:279–286.

    Article  CAS  PubMed  Google Scholar 

  28. Khomenko T, Szabo S, Deng X, et al. Role of iron in the pathogenesis of cysteamine-induced duodenal ulceration in rats. Am J Physiol Gastrointest Liver Physiol. 2009;296:G1277–G1286.

    Article  CAS  PubMed  Google Scholar 

  29. Heinrich PC, Behrmann I, Müller-Newen G, et al. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J. 1998;334:297–314.

    CAS  PubMed  Google Scholar 

  30. Zhong Z, Wen Z, Darnell JE Jr. Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science. 1994;264:95–98.

    Article  CAS  PubMed  Google Scholar 

  31. Funamoto M, Fujio Y, Kunisada K, et al. Signal transducer and activator of transcription 3 is required for glycoprotein 130-mediated induction of vascular endothelial growth factor in cardiac myocytes. J Biol Chem. 2000;275:10561–10566.

    Article  CAS  PubMed  Google Scholar 

  32. Goldsmith JR, Uronis JM, Jobin C. Mu opioid signaling protects against acute murine intestinal injury in a manner involving Stat3 signaling. Am J Pathol. 2011;179:673–683.

    Article  CAS  PubMed  Google Scholar 

  33. Turkson J, Bowman T, Garcia R, et al. Stat3 activation by Src induces specific gene regulation and is required for cell transformation. Mol Cell Biol. 1998;18:2545–2552.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Phromnoi K, Prasad S, Gupta SC, et al. Dihydroxypentamethoxyflavone down-regulates constitutive and inducible signal transducers and activators of transcription-3 through the induction of tyrosine phosphatase SHP-1. Mol Pharmacol. 2011;80:889–899.

    Article  CAS  PubMed  Google Scholar 

  35. Sugimoto K, Ogawa A, Mizoguchi E, et al. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J Clin Invest. 2008;118:534–544.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Liu L, McBride KM, Reich NC. STAT3 nuclear import is independent of tyrosine phosphorylation and mediated by importin-alpha3. Proc Natl Acad Sci USA. 2005;102:8150–8155.

    Article  CAS  PubMed  Google Scholar 

  37. Deng X, Xiong X, Khomenko T, et al. Inappropriate angiogenic response as a novel mechanism of duodenal ulceration and impaired healing. Dig Dis Sci. 2011;56:2792–2801.

    Article  PubMed  Google Scholar 

  38. Sandor Z, Deng XM, Khomenko T, et al. Altered angiogenic balance in ulcerative colitis: a key to impaired healing? Biochem Biophys Res Commun. 2006;50:147–150.

    Article  Google Scholar 

  39. Zhang X, Yue P, Fletcher S, et al. A novel small-molecule disrupts Stat3 SH2 domain-phosphotyrosine interactions and Stat3-dependent tumor processes. Biochem Pharmacol. 2010;79:1398–1409.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Moser C, Lang SA, Mori A, et al. ENMD-1198, a novel tubulin-binding agent reduces HIF-1 alpha and STAT3 activity in human hepatocellular carcinoma (HCC) cells, and inhibits growth and vascularization in vivo. BMC Cancer. 2008;8:206.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Poynter JA, Herrmann JL, Manukyan MC, et al. Intracoronary mesenchymal stem cells promote postischemic myocardial functional recovery, decrease inflammation, and reduce apoptosis via a signal transducer and activator of transcription 3 mechanism. J Am Coll Surg. 2011;213:253–260.

    Article  PubMed  Google Scholar 

  42. Ng YP, Cheung ZH, Ip NY. STAT3 as a downstream mediator of Trk signaling and functions. J Biol Chem. 2006;281:15636–15644.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The present study was supported by funds from the Department of Veterans Affairs, Medical Research Service Merit Review.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandor Szabo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khomenko, T., Deng, X., Ahluwalia, A. et al. STAT3 and Importins Are Novel Mediators of Early Molecular and Cellular Responses in Experimental Duodenal Ulceration. Dig Dis Sci 59, 297–306 (2014). https://doi.org/10.1007/s10620-013-2807-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-013-2807-6

Keywords

Navigation