Skip to main content
Log in

The Myc 3′ Wnt Responsive Element Regulates Neutrophil Recruitment After Acute Colonic Injury in Mice

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

The Wnt/β-catenin pathway regulates intestinal development, homeostasis, and regeneration after injury. Wnt/β-catenin signaling drives intestinal proliferation by activating expression of the c-Myc proto-oncogene (Myc) through the Myc 3′ Wnt responsive DNA element (Myc 3′ WRE). In a previous study, we found that deletion of the Myc 3′ WRE in mice caused increased MYC expression and increased cellular proliferation in the colon. When damaged by dextran sodium sulfate (DSS), the increased proliferative capacity of Myc 3′ WRE−/− colonocytes resulted in a more rapid recovery compared with wild-type (WT) mice. In that study, we did not examine involvement of the immune system in colonic regeneration.

Purpose

To characterize the innate immune response in Myc 3′ WRE−/− and WT mice during and after DSS-induced colonic injury.

Methods

Mice were fed 2.5 % DSS in their drinking water for five days to induce colonic damage and were then returned to normal water for two or four days to recover. Colonic sections were prepared and neutrophils and macrophages were analyzed by immunohistochemistry. Cytokine and chemokine levels were analyzed by probing a cytokine array with colonic lysates.

Results

In comparison with WT mice, there was enhanced leukocyte infiltration into the colonic mucosal and submucosal layers of Myc 3′ WRE−/− mice after DSS damage. Levels of activated neutrophils were substantially increased in damaged Myc 3′ WRE−/− colons as were levels of the neutrophil chemoattractants C5/C5a, CXCL1, and CXCL2.

Conclusion

The Myc 3′ WRE regulates neutrophil infiltration into DSS-damaged colons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. Cell. 2012;149:1192–1205.

    Article  PubMed  CAS  Google Scholar 

  2. Simons BD, Clevers H. Stem cell self-renewal in intestinal crypt. Exp Cell Res. 2011;317:2719–2724.

    Article  PubMed  CAS  Google Scholar 

  3. Davidson LA, Goldsby JS, Callaway ES, Shah MS, Barker N, Chapkin RS. Alteration of colonic stem cell gene signatures during the regenerative response to injury. Biochim Biophys Acta. 1822;2012:1600–1607.

    Google Scholar 

  4. Fukui T, Takeda H, Shu HJ, et al. Investigation of Musashi-1 expressing cells in the murine model of dextran sodium sulfate-induced colitis. Dig Dis Sci. 2006;51:1260–1268.

    Article  PubMed  CAS  Google Scholar 

  5. Malvin NP, Seno H, Stappenbeck TS. Colonic epithelial response to injury requires Myd88 signaling in myeloid cells. Mucosal Immunol. 2012;5:194–206.

    Article  PubMed  CAS  Google Scholar 

  6. Yui S, Nakamura T, Sato T, et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5(+) stem cell. Nat Med. 2012;18:618–623.

    Article  PubMed  CAS  Google Scholar 

  7. Qin X. Etiology of inflammatory bowel disease: a unified hypothesis. World J Gastroenterol. 2012;18:1708–1722.

    Article  PubMed  Google Scholar 

  8. Saleh M, Trinchieri G. Innate immune mechanisms of colitis and colitis-associated colorectal cancer. Nat Rev Immunol. 2011;11:9–20.

    Article  PubMed  CAS  Google Scholar 

  9. Gersemann M, Wehkamp J, Stange EF. Innate immune dysfunction in inflammatory bowel disease. J Intern Med.. 2012;271:421–428.

    Article  PubMed  CAS  Google Scholar 

  10. Wirtz S, Neufert C, Weigmann B, Neurath MF. Chemically induced mouse models of intestinal inflammation. Nat Protoc.. 2007;2:541–546.

    Article  PubMed  CAS  Google Scholar 

  11. Wirtz S, Neurath MF. Mouse models of inflammatory bowel disease. Adv Drug Deliv Rev.. 2007;59:1073–1083.

    Article  PubMed  CAS  Google Scholar 

  12. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17:9–26.

    Article  PubMed  CAS  Google Scholar 

  13. Pinto D, Gregorieff A, Begthel H, Clevers H. Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev. 2003;17:1709–1713.

    Article  PubMed  CAS  Google Scholar 

  14. Sancho E, Batlle E, Clevers H. Signaling pathways in intestinal development and cancer. Annu Rev Cell Dev Biol. 2004;20:695–723.

    Article  PubMed  CAS  Google Scholar 

  15. He TC, Sparks AB, Rago C, et al. Identification of c-MYC as a target of the APC pathway. Science. 1998;281:1509–1512.

    Article  PubMed  CAS  Google Scholar 

  16. Mosimann C, Hausmann G, Basler K. Beta-catenin hits chromatin: regulation of Wnt target gene activation. Nat Rev Mol Cell Biol. 2009;10:276–286.

    Article  PubMed  CAS  Google Scholar 

  17. Yochum GS, Cleland R, Goodman RH. A genome-wide screen for beta-catenin binding sites identifies a downstream enhancer element that controls c-Myc gene expression. Mol Cell Biol. 2008;28:7368–7379.

    Article  PubMed  CAS  Google Scholar 

  18. Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F. The c-Myc target gene network. Semin Cancer Biol. 2006;16:253–264.

    Article  PubMed  CAS  Google Scholar 

  19. Eilers M, Eisenman RN. Myc’s broad reach. Genes Dev. 2008;22:2755–2766.

    Article  PubMed  CAS  Google Scholar 

  20. Yochum GS, McWeeney S, Rajaraman V, Cleland R, Peters S, Goodman RH. Serial analysis of chromatin occupancy identifies beta-catenin target genes in colorectal carcinoma cells. Proc Natl Acad Sci USA. 2007;104:3324–3329.

    Article  PubMed  CAS  Google Scholar 

  21. Yochum GS, Sherrick CM, Macpartlin M, Goodman RH. A beta-catenin/TCF-coordinated chromatin loop at MYC integrates 5’ and 3′ Wnt responsive enhancers. Proc Natl Acad Sci USA. 2010;107:145–150.

    Article  PubMed  CAS  Google Scholar 

  22. Konsavage WM Jr, Jin G, Yochum GS. The myc 3′ wnt-responsive element regulates homeostasis and regeneration in the mouse intestinal tract. Mol Cell Biol. 2012;32:3891–3902.

    Article  PubMed  CAS  Google Scholar 

  23. Ashton GH, Morton JP, Myant K, et al. Focal adhesion kinase is required for intestinal regeneration and tumorigenesis downstream of Wnt/c-Myc signaling. Dev Cell. 2010;19:259–269.

    Article  PubMed  CAS  Google Scholar 

  24. Koch S, Nava P, Addis C, et al. The Wnt antagonist Dkk1 regulates intestinal epithelial homeostasis and wound repair Gastroenterology. 2011;141:259–268, 268 e251-258.

  25. Bradley PP, Priebat DA, Christensen RD, Rothstein G. Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol. 1982;78:206–209.

    Article  PubMed  CAS  Google Scholar 

  26. Graff G, Gamache DA, Brady MT, Spellman JM, Yanni JM. Improved myeloperoxidase assay for quantitation of neutrophil influx in a rat model of endotoxin-induced uveitis. J Pharmacol Toxicol Methods. 1998;39:169–178.

    Article  PubMed  CAS  Google Scholar 

  27. Boismenu R, Chen Y. Insights from mouse models of colitis. J Leukoc Biol. 2000;67:267–278.

    PubMed  CAS  Google Scholar 

  28. Bougarn S, Cunha P, Harmache A, Fromageau A, Gilbert FB, Rainard P. Muramyl dipeptide synergizes with Staphylococcus aureus lipoteichoic acid to recruit neutrophils in the mammary gland and to stimulate mammary epithelial cells. Clin Vaccine Immunol. 2010;17:1797–1809.

    Article  PubMed  CAS  Google Scholar 

  29. Reutershan J, Ley K. Bench-to-bedside review: acute respiratory distress syndrome: how neutrophils migrate into the lung. Crit Care. 2004;8:453–461.

    Article  PubMed  Google Scholar 

  30. De Filippo K, Henderson RB, Laschinger M, Hogg N. Neutrophil chemokines KC and macrophage-inflammatory protein-2 are newly synthesized by tissue macrophages using distinct TLR signaling pathways. J Immunol. 2008;180:4308–4315.

    PubMed  Google Scholar 

  31. Godaly G, Bergsten G, Hang L, et al. Neutrophil recruitment, chemokine receptors, and resistance to mucosal infection. J Leukoc Biol. 2001;69:899–906.

    PubMed  CAS  Google Scholar 

  32. Stadnyk AW. Intestinal epithelial cells as a source of inflammatory cytokines and chemokines. Can J Gastroenterol. 2002;16:241–246.

    PubMed  Google Scholar 

  33. Fernandez PC, Frank SR, Wang L, et al. Genomic targets of the human c-Myc protein. Genes Dev. 2003;17:1115–1129.

    Article  PubMed  CAS  Google Scholar 

  34. Cruikshank W, Little F. lnterleukin-16: the ins and outs of regulating T-cell activation. Crit Rev Immunol. 2008;28:467–483.

    Article  PubMed  CAS  Google Scholar 

  35. Cruikshank WW, Kornfeld H, Center DM. Interleukin-16. J Leukoc Biol.. 2000;67:757–766.

    PubMed  CAS  Google Scholar 

  36. Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res. 2009;29:313–326.

    Article  PubMed  CAS  Google Scholar 

  37. Hall LJ, Faivre E, Quinlan A, Shanahan F, Nally K, Melgar S. Induction and activation of adaptive immune populations during acute and chronic phases of a murine model of experimental colitis. Dig Dis Sci. 2011;56:79–89.

    Article  PubMed  CAS  Google Scholar 

  38. Buanne P, Di Carlo E, Caputi L, et al. Crucial pathophysiological role of CXCR2 in experimental ulcerative colitis in mice. J Leukoc Biol. 2007;82:1239–1246.

    Article  PubMed  CAS  Google Scholar 

  39. Schicho R, Bashashati M, Bawa M, et al. The atypical cannabinoid O-1602 protects against experimental colitis and inhibits neutrophil recruitment. Inflamm Bowel Dis. 2011;17:1651–1664.

    Article  PubMed  Google Scholar 

  40. Sina C, Gavrilova O, Forster M, et al. G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation. J Immunol. 2009;183:7514–7522.

    Article  PubMed  CAS  Google Scholar 

  41. Butler M, Sanmugalingam D, Burton VJ, et al. Impairment of adenosine A3 receptor activity disrupts neutrophil migratory capacity and impacts innate immune function in vivo. Eur J Immunol. 2012;42:3358–3368.

    Article  PubMed  CAS  Google Scholar 

  42. Shea-Donohue T, Thomas K, Cody MJ, et al. Mice deficient in the CXCR2 ligand, CXCL1 (KC/GRO-alpha), exhibit increased susceptibility to dextran sodium sulfate (DSS)-induced colitis. Innate Immun. 2008;14:117–124.

    Article  PubMed  CAS  Google Scholar 

  43. Costa F, Mumolo MG, Ceccarelli L, et al. Calprotectin is a stronger predictive marker of relapse in ulcerative colitis than in Crohn’s disease. Gut. 2005;54:364–368.

    Article  PubMed  CAS  Google Scholar 

  44. Diamanti A, Colistro F, Basso MS, et al. Clinical role of calprotectin assay in determining histological relapses in children affected by inflammatory bowel diseases. Inflamm Bowel Dis. 2008;14:1229–1235.

    Article  PubMed  CAS  Google Scholar 

  45. Farooq SM, Stillie R, Svensson M, Svanborg C, Strieter RM, Stadnyk AW. Therapeutic effect of blocking CXCR2 on neutrophil recruitment and dextran sodium sulfate-induced colitis. J Pharmacol Exp Ther. 2009;329:123–129.

    Article  PubMed  CAS  Google Scholar 

  46. Delmore JE, Issa GC, Lemieux ME, et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 2011;146:904–917.

    Article  PubMed  CAS  Google Scholar 

  47. Hammoudeh DI, Follis AV, Prochownik EV, Metallo SJ. Multiple independent binding sites for small-molecule inhibitors on the oncoprotein c-Myc. J Am Chem Soc.. 2009;131:7390–7401.

    Article  PubMed  CAS  Google Scholar 

  48. Rahl PB, Lin CY, Seila AC, et al. c-Myc regulates transcriptional pause release. Cell. 2010;141:432–445.

    Article  PubMed  CAS  Google Scholar 

  49. Wang H, Hammoudeh DI, Follis AV, et al. Improved low molecular weight Myc-Max inhibitors. Mol Cancer Ther. 2007;6:2399–2408.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

National Institutes of Health grant R01DK080805 to G.S.Y.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory S. Yochum.

Additional information

Wesley M. Konsavage and Jennifer N. Roper: contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konsavage, W.M., Roper, J.N., Ishmael, F.T. et al. The Myc 3′ Wnt Responsive Element Regulates Neutrophil Recruitment After Acute Colonic Injury in Mice. Dig Dis Sci 58, 2858–2867 (2013). https://doi.org/10.1007/s10620-013-2686-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-013-2686-x

Keywords

Navigation