Lactulose Mediates Suppression of Dextran Sodium Sulfate-Induced Colon Inflammation by Increasing Hydrogen Production

Abstract

Background

Molecular hydrogen (H2) is a potent antioxidant and able to protect organs from oxidative stress injuries. Orally administered lactulose, a potent H2 inducer, is digested by colon microflora and significantly increases H2 production, indicating its potential anti-inflammatory action.

Objective

To evaluate the anti-inflammatory effects of lactulose on dextran sodium sulfate (DSS)-induced colitis in mice.

Methods

Mice were randomly assigned into seven groups, receiving regular distilled water, H2-rich saline (peritoneal injection), DSS, oral lactulose (0.1, 0.15, 0.2 ml/10 g, respectively), and lactulose (0.2 ml/10 g) + oral antibiotics. The mouse model of human ulcerative colitis was established by supplying mice with water containing DSS. The H2 breath test was used to determine the exhaled H2 concentration. Body weight, colitis score, colon length, pathological features and tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), maleic dialdehyde (MDA) and marrow peroxidase (MPO) levels in colon lesions were evaluated.

Results

After 7 days, DSS-induced loss of body weight, increase of colitis score, shortening of colon length, pathological changes and elevated levels of TNF-α, IL-1β, MDA, and MPO in colon lesions, were significantly suppressed by oral lactulose administration and intraperitoneally injected H2-rich saline. Ingestion of antibiotics significantly compromised the anti-inflammatory effects of lactulose. The H2 breath test showed that lactulose administration significantly induced hydrogen production and that antibiotics administration could inhibit H2 production.

Conclusion

Lactulose can prevent the development of DSS-induced colitis and alleviate oxidative stress in the colon, as measured by MDA and MPO, probably by increasing endogenous H2 production.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Grisham MB, Granger DN. Neutrophil-mediated mucosal injury. Role of reactive oxygen metabolites. Dig Dis Sci. 1988;33:6S–15S.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Suematsu M, Suzuki M, Kitahora T, et al. Increased respiratory burst of leukocytes in inflammatory bowel diseases—the analysis of free radical generation by using chemiluminescence probe. J Clin Lab Immunol. 1987;24:125–128.

    PubMed  CAS  Google Scholar 

  3. 3.

    Karp SM, Koch TR. Oxidative stress and antioxidants in inflammatory bowel disease. Dis Mon. 2006;52:199–207.

    PubMed  Article  Google Scholar 

  4. 4.

    Keshavarzian A, Morgan G, Sedghi S, Gordon JH, Doria M. Role of reactive oxygen metabolites in experimental colitis. Gut. 1990;31:786–790.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Neilly PJ, Gardiner KR, Rowlands BJ. Experimental colitis is ameliorated by inhibition of nitric oxide synthase activity. Gut. 1996;38:475.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Buffinton GD, Doe WF. Depleted mucosal antioxidant defences in inflammatory bowel disease. Free Radic Biol Med. 1995;19:911–918.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Oz HS, Chen TS, McClain CJ, de Villiers WJ. Antioxidants as novel therapy in a murine model of colitis. J Nutr Biochem. 2005;16:297–304.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Ohsawa I, Ishikawa M, Takahashi K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med. 2007;13:688–694.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Huang CS, Kawamura T, Toyoda Y, Nakao A. Recent advances in hydrogen research as a therapeutic medical gas. Free Radic Res. 2010;44:971–982.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Dieleman LA, Palmen MJ, Akol H, et al. Chronic experimental colitis induced by dextran sulphate sodium (dss) is characterized by th1 and th2 cytokines. Clin Exp Immunol. 1998;114:385–391.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Kajiya M, Silva MJ, Sato K, Ouhara K, Kawai T. Hydrogen mediates suppression of colon inflammation induced by dextran sodium sulfate. Biochem Biophys Res Commun. 2009;386:11–15.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Florent C, Flourie B, Leblond A, Rautureau M, Bernier JJ, Rambaud JC. Influence of chronic lactulose ingestion on the colonic metabolism of lactulose in man (an in vivo study). J Clin Invest. 1985;75:608–613.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Kim YJ, Kim EH, Hahm KB. Oxidative stress in inflammation-based gastrointestinal tract diseases: challenges and opportunities. J Gastroenterol Hepatol. 2012;27:1004–1010.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Edwards FC, Truelove SC. The course and prognosis of ulcerative colitis. Gut. 1963;4:299–315.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Eaden JA, Abrams KR, Mayberry JF. The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut. 2001;48:526–535.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Damiani CR, Benetton CA, Stoffel C, et al. Oxidative stress and metabolism in animal model of colitis induced by dextran sulfate sodium. J Gastroenterol Hepatol. 2007;22:1846–1851.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Seril DN, Liao J, Yang GY, Yang CS. Oxidative stress and ulcerative colitis-associated carcinogenesis: studies in humans and animal models. Carcinogenesis. 2003;24:353–362.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Hayashida K, Sano M, Ohsawa I, et al. Inhalation of hydrogen gas reduces infarct size in the rat model of myocardial ischemia–reperfusion injury. Biochem Biophys Res Commun. 2008;373:30–35.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Fukuda K, Asoh S, Ishikawa M, Yamamoto Y, Ohsawa I, Ohta S. Inhalation of hydrogen gas suppresses hepatic injury caused by ischemia/reperfusion through reducing oxidative stress. Biochem Biophys Res Commun. 2007;361:670–674.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Buchholz BM, Kaczorowski DJ, Sugimoto R, et al. Hydrogen inhalation ameliorates oxidative stress in transplantation induced intestinal graft injury. Am J Transplant. 2008;8:2015–2024.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Gharib B, Hanna S, Abdallahi OM, Lepidi H, Gardette B, De Reggi M. Anti-inflammatory properties of molecular hydrogen: investigation on parasite-induced liver inflammation. C R Acad Sci III. 2001;324:719–724.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Chen H, Sun YP, Li Y, et al. Hydrogen-rich saline ameliorates the severity of l-arginine-induced acute pancreatitis in rats. Biochem Biophys Res Commun. 2010;393:308–313.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Blei AT, Cordoba J. Hepatic encephalopathy. Am J Gastroenterol. 2001;96:1968–1976.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Voskuijl W, de Lorijn F, Verwijs W, et al. Peg 3350 (transipeg) versus lactulose in the treatment of childhood functional constipation: a double blind, randomised, controlled, multicentre trial. Gut. 2004;53:1590–1594.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Chen X, Zuo Q, Hai Y, Sun XJ. Lactulose: an indirect antioxidant ameliorating inflammatory bowel disease by increasing hydrogen production. Med Hypotheses. 2011;76:325–327.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Rhodes JM, Middleton P, Jewell DP. The lactulose hydrogen breath test as a diagnostic test for small-bowel bacterial overgrowth. Scand J Gastroenterol. 1979;14:333–336.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Sen S, Dear KL, King TS, Elia M, Hunter JO. Evaluation of hydrogen excretion after lactulose administration as a screening test for causes of irritable bowel syndrome. Eur J Gastroenterol Hepatol. 2002;14:753–756.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Hentschel U, Dobrindt U, Steinert M. Commensal bacteria make a difference. Trends Microbiol. 2003;11:148–150.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Hooper LV, Gordon JI. Commensal host-bacterial relationships in the gut. Science. 2001;292:1115–1118.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Panesar PS, Kumari S. Lactulose: production, purification and potential applications. Biotechnol Adv. 2011;29:940–948.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Looijer-van Langen MA, Dieleman LA. Prebiotics in chronic intestinal inflammation. Inflamm Bowel Dis. 2009;15:454–462.

    PubMed  Article  Google Scholar 

  32. 32.

    Kajiya M, Sato K, Silva MJ, et al. Hydrogen from intestinal bacteria is protective for concanavalin a-induced hepatitis. Biochem Biophys Res Commun. 2009;386:316–321.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Huchzermeyer H, Schumann C. Lactulose—a multifaceted substance. Z Gastroenterol. 1997;35:945–955.

    PubMed  CAS  Google Scholar 

  34. 34.

    Hoffmann K, Mossell DAA, Korus W, van de Kamer JH. Investigations on the mode of action of lactulose in the human intestine. Klin Wochenschr. 1964;42:126–130.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Schumann C. Medical, nutritional and technological properties of lactulose. An update. Eur J Nutr. 2002;41:I17–I25.

    PubMed  Article  Google Scholar 

  36. 36.

    Xie K, Yu Y, Zhang Z, et al. Hydrogen gas improves survival rate and organ damage in zymosan-induced generalized inflammation model. Shock. 2010;34:495–501.

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Seyan AS, Hughes RD, Shawcross DL. Changing face of hepatic encephalopathy: role of inflammation and oxidative stress. World J Gastroenterol. 2010;16:3347–3357.

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Shawcross DL, Shabbir SS, Taylor NJ, Hughes RD. Ammonia and the neutrophil in the pathogenesis of hepatic encephalopathy in cirrhosis. Hepatology. 2010;51:1062–1069.

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by Creativity and Innovation Training Program of Second Military Medical University (ZD2010009).

Conflict of interest

None.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xuejun Sun or Zhimin Kang.

Additional information

Xiao Chen and Xiao Zhai contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, X., Zhai, X., Shi, J. et al. Lactulose Mediates Suppression of Dextran Sodium Sulfate-Induced Colon Inflammation by Increasing Hydrogen Production. Dig Dis Sci 58, 1560–1568 (2013). https://doi.org/10.1007/s10620-013-2563-7

Download citation

Keywords

  • Lactulose
  • Hydrogen
  • Ulcerative colitis
  • Antioxidant
  • Oxidative stress