Skip to main content
Log in

Electrophysiological Characteristics of Enteric Neurons Isolated from the Immortomouse

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Recently, two enteric neuronal cell lines, one fetal and the other post-natal (IM-PEN), have been developed from the H-2Kb-tsA58 transgenic mouse (immortomouse). However, their electrophysiological properties are not known. The goal of this study was to determine the electrical excitability and ionic conductance of the immortalized postnatal enteric neuronal (IM-PEN) cell line.

Methods

Whole cell patch clamp studies, immunohistochemistry and RT-PCR were performed on differentiated IM-PEN cells following propagation at 33 °C and differentiation at 37 °C.

Results

Differentiated IM-PEN cells stained positively for the neuron specific markers βIII-tubulin and PGP9.5. The mRNA for several ion channels expressed in enteric neurons were detected by RT-PCR. In current clamp, the resting membrane potential was −24.6 ± 2.1 mV (n = 6) for IM-FEN and −29.8 ± 0.9 mV (n = 30) for IM-PEN. Current injections from Vh −80 mV resulted in passive responses but not action potentials. Depolarizing pulses in the whole cell voltage clamp configuration from Vh −80 mV elicited small nifedipine-sensitive inward currents. Additionally, outward currents with slow deactivating tail currents were blocked by niflumic acid and low chloride solution. A volume-regulated anion current was elicited by hypo-osmotic solution and inhibited by 10 μM DCPIB. Growth with rabbit gastrointestinal smooth muscle did not yield significant differences in the active properties of the IM-PEN cell line. Transient expression of L-type Ca2+ channels produced large inward currents demonstrating a working mechanism for protein folding and transport.

Conclusion

The electrophysiological characteristics of IM-PEN cells suggest that chloride channels in IM-PEN cells play an important role in their resting state, and membrane trafficking of some of the ion channels may preclude their electrical excitability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

IM-FEN:

Immortalized fetal enteric neurons

IM-PEN:

Immortalized post-natal enteric neurons

DCPIB:

4-[(2-Butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy]butanoic acid

References

  1. Brookes SJ, Ewart WR, Wingate DL. Intracellular recordings from myenteric neurones in the human colon. J Physiol. 1987;390:305–318.

    PubMed  CAS  Google Scholar 

  2. Costa M, Brookes SJ, Hennig GW. Anatomy and physiology of the enteric nervous system. Gut. 2000;47:iv15–19; discussion iv26.

    Google Scholar 

  3. Hirst GD, Holman ME, Spence I. Two types of neurones in the myenteric plexus of duodenum in the guinea-pig. J Physiol. 1974;236:303–326.

    CAS  Google Scholar 

  4. Mongardi Fantaguzzi C, Thacker M, Chiocchetti R, Furness JB. Identification of neuron types in the submucosal ganglia of the mouse ileum. Cell Tissue Res. 2009;336:179–189.

    Article  PubMed  CAS  Google Scholar 

  5. Nurgali K, Stebbing MJ, Furness JB. Correlation of electrophysiological and morphological characteristics of enteric neurons in the mouse colon. J Comp Neurol. 2004;468:112–124.

    Article  PubMed  Google Scholar 

  6. Furness JB, Jones C, Nurgali K, Clerc N. Intrinsic primary afferent neurons and nerve circuits within the intestine. Prog Neurobiol. 2004;72:143–164.

    Article  PubMed  CAS  Google Scholar 

  7. Hirst GD, Johnson SM, van Helden DF. The slow calcium-dependent potassium current in a myenteric neurone of the guinea-pig ileum. J Physiol. 1985;361:315–337.

    PubMed  CAS  Google Scholar 

  8. Hodgkiss JP, Lees GM. Morphological studies of electrophysiologically-identified myenteric plexus neurons of the guinea-pig ileum. Neuroscience. 1983;8:593–608.

    Article  PubMed  CAS  Google Scholar 

  9. Lomax AE, Bertrand PP, Furness JB. Electrophysiological characteristics distinguish three classes of neuron in submucosal ganglia of the guinea-pig distal colon. Neuroscience. 2001;103:245–255.

    Article  PubMed  CAS  Google Scholar 

  10. Rugiero F, Gola M, Kunze WA, et al. Analysis of whole-cell currents by patch clamp of guinea-pig myenteric neurones in intact ganglia. J Physiol. 2002;538:447–463.

    Article  PubMed  CAS  Google Scholar 

  11. Osorio N, Delmas P. Patch clamp recording from enteric neurons in situ. Nat Protoc. 2010;6:15–27.

    Article  PubMed  Google Scholar 

  12. Anitha M, Joseph I, Ding X, et al. Characterization of fetal and postnatal enteric neuronal cell lines with improvement in intestinal neural function. Gastroenterology. 2008;134:1424–1435.

    Article  PubMed  CAS  Google Scholar 

  13. Noble M, Groves AK, Ataliotis P, et al. The H-2KbtsA58 transgenic mouse: a new tool for the rapid generation of novel cell lines. Transgenic Res. 1995;4:215–225.

    Article  PubMed  CAS  Google Scholar 

  14. Teng B, Murthy KS, Kuemmerle JF, et al. Expression of endothelial nitric oxide synthase in human and rabbit gastrointestinal smooth muscle cells. Am J Physiol. 1998;275:G342–G351.

    PubMed  CAS  Google Scholar 

  15. Anitha M, Chandrasekharan B, Salgado JR, et al. Glial-derived neurotrophic factor modulates enteric neuronal survival and proliferation through neuropeptide Y. Gastroenterology. 2006;131:1164–1178.

    Article  PubMed  CAS  Google Scholar 

  16. Foong JP, Nguyen TV, Furness JB, et al. Myenteric neurons of the mouse small intestine undergo significant electrophysiological and morphological changes during postnatal development. J Physiol. 2012;590:2375–2390.

    Article  PubMed  CAS  Google Scholar 

  17. Ackerman MJ, Wickman KD, Clapham DE. Hypotonicity activates a native chloride current in Xenopus oocytes. J Gen Physiol. 1994;103:153–179.

    Article  PubMed  CAS  Google Scholar 

  18. Anitha M, Shahnavaz N, Qayed E, et al. BMP2 promotes differentiation of nitrergic and catecholaminergic enteric neurons through a Smad1-dependent pathway. Am J Physiol Gastrointest Liver Physiol. 2010;298:G375–G383.

    Article  PubMed  CAS  Google Scholar 

  19. Caccamo D, Katsetos CD, Herman MM, et al. Immunohistochemistry of a spontaneous murine ovarian teratoma with neuroepithelial differentiation. Neuron-associated beta-tubulin as a marker for primitive neuroepithelium. Lab Invest. 1989;60:390–398.

    PubMed  CAS  Google Scholar 

  20. Young HM, Bergner AJ, Muller T. Acquisition of neuronal and glial markers by neural crest-derived cells in the mouse intestine. J Comp Neurol. 2003;456:1–11.

    Article  PubMed  Google Scholar 

  21. Bian X, Ren J, DeVries M, et al. Peristalsis is impaired in the small intestine of mice lacking the P2X3 subunit. J Physiol. 2003;551:309–322.

    Article  PubMed  CAS  Google Scholar 

  22. Furukawa K, Taylor GS, Bywater RA. An intracellular study of myenteric neurons in the mouse colon. J Neurophysiol. 1986;55:1395–1406.

    PubMed  CAS  Google Scholar 

  23. Ren J, Bian X, DeVries M, et al. P2X2 subunits contribute to fast synaptic excitation in myenteric neurons of the mouse small intestine. J Physiol. 2003;552:809–821.

    Article  PubMed  CAS  Google Scholar 

  24. Mao Y, Wang B, Kunze W. Characterization of myenteric sensory neurons in the mouse small intestine. J Neurophysiol. 2006;96:998–1010.

    Article  PubMed  Google Scholar 

  25. Liu MT, Rayport S, Jiang Y, et al. Expression and function of 5-HT3 receptors in the enteric neurons of mice lacking the serotonin transporter. Am J Physiol. 2002;283:G1398–G1411.

    CAS  Google Scholar 

  26. Copel C, Osorio N, Crest M, et al. Activation of neurokinin 3 receptor increases Na(v)1.9 current in enteric neurons. J Physiol. 2009;587:1461–1479.

    Article  PubMed  CAS  Google Scholar 

  27. Neylon CB, Nurgali K, Hunne B, et al. Intermediate-conductance calcium-activated potassium channels in enteric neurones of the mouse: pharmacological, molecular and immunochemical evidence for their role in mediating the slow after hyperpolarization. J Neurochem. 2004;90:1414–1422.

    Article  PubMed  CAS  Google Scholar 

  28. Rugiero F, Mistry M, Sage D, et al. Selective expression of a persistent tetrodotoxin-resistant Na+ current and NaV1.9 subunit in myenteric sensory neurons. J Neurosci. 2003;23:2715–2725.

    PubMed  CAS  Google Scholar 

  29. Sage D, Salin P, Alcaraz G, et al. Na(v)1.7 and Na(v)1.3 are the only tetrodotoxin-sensitive sodium channels expressed by the adult guinea pig enteric nervous system. J Comp Neurol. 2007;504:363–378.

    Article  PubMed  CAS  Google Scholar 

  30. Starodub AM, Wood JD. A-type potassium current in myenteric neurons from guinea-pig small intestine. Neuroscience. 2000;99:389–396.

    Article  PubMed  CAS  Google Scholar 

  31. Vianna-Jorge R, Oliveira CF, Garcia ML, et al. Correolide, a nor-triterpenoid blocker of Shaker-type Kv1 channels elicits twitches in guinea-pig ileum by stimulating the enteric nervous system and enhancing neurotransmitter release. Br J Pharmacol. 2000;131:772–778.

    Article  PubMed  CAS  Google Scholar 

  32. Zholos AV, Baidan LV, Starodub AM, Wood JD. Potassium channels of myenteric neurons in guinea-pig small intestine. Neuroscience. 1999;89:603–618.

    Article  PubMed  CAS  Google Scholar 

  33. Bartoo AC, Sprunger LK, Schneider DA. Expression and distribution of TTX-sensitive sodium channel alpha subunits in the enteric nervous system. J Comp Neurol. 2005;486:117–131.

    Article  PubMed  CAS  Google Scholar 

  34. Akbarali HI, Giles WR. Ca2+ and Ca(2+)-activated Cl currents in rabbit oesophageal smooth muscle. J Physiol. 1993;460:117–133.

    PubMed  CAS  Google Scholar 

  35. Hoffmann EK, Lambert IH, Pedersen SF. Physiology of cell volume regulation in vertebrates. Physiol Rev. 2009;89:193–277.

    Article  PubMed  CAS  Google Scholar 

  36. Abdullaev IF, Rudkouskaya A, Schools GP, et al. Pharmacological comparison of swelling-activated excitatory amino acid release and Cl currents in cultured rat astrocytes. J Physiol. 2006;572:677–689.

    PubMed  CAS  Google Scholar 

  37. Bryan-Sisneros A, Sabanov V, Thoroed SM, Doroshenko P. Dual role of ATP in supporting volume-regulated chloride channels in mouse fibroblasts. Biochim Biophys Acta. 2000;1468:63–72.

    Article  PubMed  CAS  Google Scholar 

  38. Carpaneto A, Accardi A, Pisciotta M, Gambale F. Chloride channels activated by hypotonicity in N2A neuroblastoma cell line. Exp Brain Res. 1999;124:193–199.

    Article  PubMed  CAS  Google Scholar 

  39. Harvey VL, Saul MW, Garner C, McDonald RL. A role for the volume regulated anion channel in volume regulation in the murine CNS cell line, CAD. Acta Physiol (Oxf). 2010;198:159–168.

    Article  CAS  Google Scholar 

  40. Okada Y, Sato K, Numata T. Pathophysiology and puzzles of the volume-sensitive outwardly rectifying anion channel. J Physiol. 2009;587:2141–2149.

    Google Scholar 

  41. Browe DM, Baumgarten CM. Stretch of beta 1 integrin activates an outwardly rectifying chloride current via FAK and Src in rabbit ventricular myocytes. J Gen Physiol. 2003;122:689–702.

    Article  PubMed  CAS  Google Scholar 

  42. Ben-Ari Y, Gaiarsa JL, Tyzio R, Khazipov R. GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev. 2007;87:1215–1284.

    Article  PubMed  CAS  Google Scholar 

  43. Wang DD, Kriegstein AR. Defining the role of GABA in cortical development. J Physiol. 2009;587:1873–1879.

    Article  PubMed  CAS  Google Scholar 

  44. Li H, Tornberg J, Kaila K, et al. Patterns of cation-chloride cotransporter expression during embryonic rodent CNS development. Eur J Neurosci. 2002;16:2358–2370.

    Article  PubMed  Google Scholar 

  45. Raghavan S, Gilmont RR, Miyasaka EA, et al. Successful implantation of bioengineered, intrinsically innervated, human internal anal sphincter. Gastroenterology. 2011;141:310–319.

    Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants DK46367, DA024009 and T32DA007027 and NIH-RO1 (DK080684, SS), VA-MERIT award (SS).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid I. Akbarali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hawkins, E.G., Dewey, W.L., Anitha, M. et al. Electrophysiological Characteristics of Enteric Neurons Isolated from the Immortomouse. Dig Dis Sci 58, 1516–1527 (2013). https://doi.org/10.1007/s10620-013-2557-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-013-2557-5

Keywords

Navigation