Skip to main content
Log in

Analysis of Genetic Damage and Gene Polymorphism in Hepatocellular Carcinoma (HCC) Patients in a South Indian Population

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Hepatocellular carcinoma (HCC) is the second leading cause of cancer death in many regions of Asia and the etiology of human HCC is clearly multi-factorial. The development of effective markers for the detection of HCC could have an impact on cancer mortality and significant health implications worldwide. The subjects presented here were recruited based on the serum alpha-fetoprotein level, which is an effective marker for HCC. Further, the chromosomal alterations were elucidated using trypsin G-banding. HCCs with p53 mutations have high malignant potential and are used as an indicator for the biological behavior of recurrent HCCs. The functional polymorphism in the XRCC1 gene, which participates in the base-excision repair of oxidative DNA damage, was associated with increased risk of early onset HCC. Thus, in this investigation, the p53 and XRCC1 gene polymorphisms using the standard protocols were also assessed to find out whether these genes may be associated with HCC susceptibility.

Methods

Blood samples from HCC patients (n = 93) were collected from oncology clinics in South India. Control subjects (n = 93) who had no history of tumors were selected and they were matched to cases on sex, age, and race. Peripheral blood was analyzed for chromosomal aberrations (CAs) and micronuclei (MN) formation. p53 and XRCC1 genotypes were detected using a PCR–RFLP technique.

Results

Specific biomarkers on cytogenetic endpoints might help in diagnosis and treatment measures. The frequencies of genotypes between groups were calculated by χ2 test. A statistically significant (p < 0.05) increase in CA was observed in HCC patients compared to their controls as confirmed by ANOVA and MN shows insignificant results. The study on p53 Arg72Pro and XRCC1 Arg399Gln polymorphism in HCC patients demonstrated differences in allele frequencies compared to their controls.

Conclusions

The present study indicates that chromosomal alterations and the genetic variations of p53 and XRCC1 may contribute to inter-individual susceptibility to HCC. A very limited role of genetic polymorphism was investigated in modulating the HCC risk, but the combined effect of these variants may interact to increase the risk of HCC in the South Indian population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Colombo M. Natural history of hepatocellular carcinoma. Cancer Imaging. 2005;5:85–88.

    Article  PubMed  Google Scholar 

  2. Motola Kuba D, Zamora Valdes D, Uribe M, et al. Hepatocellular carcinoma. An overview. Ann Hepatol. 2006;5:16–24.

    PubMed  CAS  Google Scholar 

  3. Villa VD, Lo CM. Liver transplantation for hepatocellular carcinoma in Asia. Oncologist. 2007;12:132–1331.

    Article  Google Scholar 

  4. Bu X, Jia F, Wang W, et al. Coupled down-regulation of mTOR and telomerase activity during fluorouracil-induced apoptosis of hepatocarcinoma cells. Bio Med Central Cancer. 2007;7:208–215.

    Google Scholar 

  5. Chakraborty T, Bhuniya D, Chatterjee M, et al. Acanthus ilicifolius plant extract prevents DNA alterations in a transplantable Ehrlich ascites carcinoma-bearing murine model. World J Gastroenterol. 2007;13:6538–6548.

    Article  PubMed  Google Scholar 

  6. Penn State Milton S. Hershey Medical Center College of Medicine/Malignant Hepatoma. Available at: http://www.hmc.psu.edu/healthinfo/m/malignanthepatoma.htm. Accessed January 15, 2008.

  7. Wong R, Corley DA. Racial and ethnic variations in hepatocellular carcinoma incidence within the United States. Am J Med. 2008;121:525–531.

    Article  PubMed  Google Scholar 

  8. Cha C, Fong Y, Jarnagin WR, et al. Predictors and patterns of recurrence after resection of hepatocellular carcinoma. J Am Coll Surg. 2003;197:753–758.

    Article  PubMed  Google Scholar 

  9. Oka H, Tamori A, Kuroki T, et al. Prospective study of alpha-fetoprotein in cirrhotic patients monitored for development of hepatocellular carcinoma. Hepatology. 1994;19:61–66.

    Article  PubMed  CAS  Google Scholar 

  10. Zheng SS, Xu X, Liang TB, et al. Liver transplantation for hepatocellular carcinoma: prognostic analysis of 89 cases. Zhonghua Wai Ke Za Zhi. 2005;43:450–454.

    PubMed  Google Scholar 

  11. Xu X, Ke QH, Shao Z-X, et al. The value of serum a-fetoprotein in predicting tumor recurrence after liver transplantation for hepatocellular carcinoma. Dig Dis Sci. 2009;54:385–388.

    Article  PubMed  CAS  Google Scholar 

  12. Albertini RJ, Anderson D, Douglas GR, et al. IPCS guidelines for the monitoring of genotoxic effects of carcinogens in humans. Mutat Res. 2000;463:111–172.

    Article  PubMed  CAS  Google Scholar 

  13. Norppa H. Cytogenetic biomarkers. In: Mechanistic Considerations in the Molecular Epidemiology of Cancer. Lyon: IARC Science Publication; 2004:157.

  14. Hagmar LS, Bonassi U, Strömberg A, et al. Chromosomal aberrations in lymphocytes predict human cancer: a report from the European Study Group on Cytogenetic Biomarkers and Health (ESCH). Cancer Res. 1998;58:4117–4121.

    PubMed  CAS  Google Scholar 

  15. Bonassi S, Hagmar L, Strömberg U, et al. European Study Group on cytogenetic biomarkers and health. Chromosomal aberrations in lymphocytes predict human cancer independently of exposure to carcinogens. Cancer Res. 2000;60:1619–1625.

    PubMed  CAS  Google Scholar 

  16. Bonassi S, Znaor A, Ceppi C, et al. An increased micronucleus frequency in peripheral blood lymphocytes predicts the risk of cancer in humans. Carcinogenesis. 2007;28:331–338.

    Google Scholar 

  17. Grisham JW. Molecular genetic alterations in primary hepatocellular neoplasms: hepatocellular adenoma, hepatocellular carcinoma, and hepatoblastoma. In: Coleman WB, Tsongalis GJ, eds. The Molecular Basis of Human Cancer. Totowa: Humana Press Inc.; 2002:269–346.

    Google Scholar 

  18. Thorgeirsson SS, Grisham JW. Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet. 2002;31:339–346.

    Article  PubMed  CAS  Google Scholar 

  19. Midorikawa Y, Yamamoto S, Ishikawa S, et al. Molecular karyotyping of human hepatocellular carcinoma using single-nucleotide polymorphism arrays. Oncogene. 2006;25:5581–5590.

    Article  PubMed  CAS  Google Scholar 

  20. Balachandar V, Mohana Devi S, Lakshman Kumar B, et al. Cytogenetic analysis of benign prostate hyperplasia (BPH) and prostate cancer (PC) patients from Tamil Nadu, South India. Sci Res Essay (Academic Journal Publication). 2008;3:212–214.

    Google Scholar 

  21. Mohana Devi S, Balachandar V, Vel Murugan P, et al. Identification of chromosomal aberrations by using trypsin G- banding in hepatocellular carcinoma patients (HCC) in Tamilnadu, India. Trop Life Sci Res. 2010;21:33–49.

    Google Scholar 

  22. Wong N, Lai P, Pang E, et al. Genomic aberrations in human hepatocellular carcinomas of differing etiologies. Clin Cancer Res. 2000;6:4000–4009.

    PubMed  CAS  Google Scholar 

  23. Lu XG, Magrane C, Yin DN, et al. Selective inactivation of p53 facilitates mouse epithelial tumor progression without chromosomal instability. Mol Cell Biol. 2001;21:6017–6030.

    Article  PubMed  CAS  Google Scholar 

  24. Sheen IS, Jeng KS, Wu JY, et al. Is p53 gene mutation an indicator of the biological behaviors of recurrence of hepatocellular carcinoma? World J Gastroenterol. 2003;9:1202–1207.

    PubMed  CAS  Google Scholar 

  25. Staib F, Hussain SP, Hofseth LJ, et al. TP53 and liver carcinogenesis. Hum Mutat. 2003;21:201–216.

    Article  PubMed  CAS  Google Scholar 

  26. Thompson LH, West MG. XRCC1 keeps DNA from getting stranded. Mutat Res. 2000;459:1–18.

    Article  PubMed  CAS  Google Scholar 

  27. Duell EJ, Wiencke JK, Cheng TJ, et al. Polymorphisms in the DNA repair genes XRCC1 and ERCC2 and biomarkers of DNA damage in human blood mononuclear cells. Carcinogenesis Lond. 2000;21:965–971.

    Article  CAS  Google Scholar 

  28. Liu F, Li B, Wei Y, Yan L, et al. XRCC1 genetic polymorphism Arg399Gln and hepatocellular carcinoma risk: a meta-analysis. Liver Int. 2011;6:802–809.

    Article  Google Scholar 

  29. Yu J, Zhang HY, Ma ZZ, et al. Methylation profiling of twenty four genes and the concordant methylation behaviours of nineteen genes that may contribute to hepatocellular carcinogenesis. Cell Res. 2003;13:319–333.

    Article  PubMed  CAS  Google Scholar 

  30. Whitehouse CJ, Taylor RM, Thistlethwaite A. XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair. Cell. 2001;104:107–117.

    Article  PubMed  CAS  Google Scholar 

  31. Moorhead PS, Novell WJ, Mellman DM, et al. Chromosome preparations of leukocytes cultured from peripheral blood. Exp Cell Res. 1960;20:613–616.

    Article  PubMed  CAS  Google Scholar 

  32. Martin Bland J, Douglas G. Altman Statistics Notes: the odds ratio. BMJ. 2000;320:1468.

    Article  Google Scholar 

  33. Frankish H. 15 million new cancer cases per year by 2020, says WHO. Lancet. 2003;361:1278.

    Article  PubMed  Google Scholar 

  34. Altekruse SF, McGlynn KA, Reichman ME. Hepatocellular carcinoma incidence, mortality, and survival trends in the United States from 1975 to 2005. J Clin Oncol. 2009;27:1485–1491.

    Article  PubMed  Google Scholar 

  35. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–767.

    Article  PubMed  CAS  Google Scholar 

  36. Jia HL, Ye QH, Qin LX. Gene expression profiling reveals potential biomarkers of human hepatocellular carcinoma. Clin Cancer Res. 2007;13:1133.

    Article  PubMed  CAS  Google Scholar 

  37. Schafer DF, Sorrell MF. Hepatocellular carcinoma. Lancet. 1999;353:1253–1257.

    Article  PubMed  CAS  Google Scholar 

  38. Um SH, Mulhall C, Alisa A. a-Fetoprotein impairs APC function and induces their apoptosis. J Immunol. 2004;173:1772–1778.

    PubMed  CAS  Google Scholar 

  39. Tilghman SM. The structure and regulation of the a-fetoprotein and albumin genes. Oxf Surv Eukaryot Genes. 1985;2:160–206.

    PubMed  CAS  Google Scholar 

  40. Yao DF, Dong ZZ, Yao M. Specific molecular markers in hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int. 2007;6:241–247.

    PubMed  CAS  Google Scholar 

  41. Otsuru A, Nagataki S, Koji T, et al. Analysis of alpha-fetoprotein gene expression in hepatocellular carcinoma and liver cirrhosis by in situ hybridization. Cancer. 1988;62:1105–1112.

    Article  PubMed  CAS  Google Scholar 

  42. Taketa K. α-fetoprotein: reevaluation in hepatology. Hepatology. 1990;12:1420–1432.

    Article  PubMed  CAS  Google Scholar 

  43. Mizejewski GJ. Alpha-fetoprotein structure and function: relevance to isoforms, epitomes, and conformational variants. Exp Biol Med. 2001;226:377–408.

    CAS  Google Scholar 

  44. Lamerz R, Hayes P, Hoffmann RT. National Academy of Clinical Biochemistry (NACB). Guidelines for the use of tumor markers in primary liver cancer. Accessed Aug 2007. Available at URL address: http://www.nacb.org/Impg/tumor/chp3d_liver.pdf; 2005.

  45. Piao Z, Park C, Park JH, Kim H. Allelotype analysis of hepatocellular carcinoma. Int J Cancer. 1998;75:29–33.

    Article  PubMed  CAS  Google Scholar 

  46. Guan XY, Fang Y, Sham JS, et al. Recurrent chromosome alterations in hepatocellular carcinoma detected by comparative genomic hybridization. Genes Chromosomes Cancer. 2000;29:110–116.

    Article  PubMed  CAS  Google Scholar 

  47. Chang J, Kim NG, Piao Z, et al. Assessment of chromosomal losses and gains in hepatocellular carcinoma. Cancer Lett. 2002;182:193–202.

    Article  PubMed  CAS  Google Scholar 

  48. Jou YS, Lee CS, Chang YH. Clustering of minimal deleted regions reveals distinct genetic pathways of human hepatocellular carcinoma. Cancer Res. 2004;64:3030–3036.

    Article  PubMed  CAS  Google Scholar 

  49. Wong N, Lai P, Pang E. Hepatology. 2000;32:1060–1068.

    Article  PubMed  CAS  Google Scholar 

  50. Niketeghad F, Decker HJ, Caselmann WH, et al. Frequent genomic imbalances suggest commonly altered tumour genes in human hepatocarcinogenesis. Br J Cancer. 2001;85:697–704.

    Article  PubMed  CAS  Google Scholar 

  51. Yeh SH, Chen PJ, Shau WY, et al. Chromosomal allelic imbalance evolving from liver cirrhosis to hepatocellular carcinoma. Gastroenterology. 2001;121:699–709.

    Article  PubMed  CAS  Google Scholar 

  52. Laurent-Puig P, Legoix P, Bluteau O, et al. Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology. 2001;120:1763–1773.

    Article  PubMed  CAS  Google Scholar 

  53. Patil MA, Gutgemann I, Zhang J, et al. Array-based comparative genomic hybridization reveals recurrent chromosomal aberrations and JAB1 as a potential target for 8q gain in hepatocellular carcinoma. Carcinogenesis. 2005;26:2050–2057.

    Google Scholar 

  54. Sheu JC. Molecular mechanism of hepatocarcinogenesis. J Gastroenterol Hepatol. 1997;12:S309–S313.

    Article  PubMed  CAS  Google Scholar 

  55. Norppa H, Luomahaara S, Heikanen H, et al. Micronucleus assay in lymphocytes as a tool to biomonitor human exposure to aneuploidogens and clastogens. Environ Health Perspect. 1993;101:139–143.

    PubMed  CAS  Google Scholar 

  56. Fenech M. Cytokinesis-block micronucleus assay. Nature Protocols. 2007;2:1084–1104.

    Google Scholar 

  57. de Almeida TMB, Leitao RC, et al. Carrilhod, Shigueko Sonoharae, Detection of micronuclei formation and nuclear anomalies in regenerative nodules of human cirrhotic livers and relationship to hepatocellular carcinoma. Cancer Genet Cytogenet. 2004;150:16–21.

    Article  PubMed  Google Scholar 

  58. Bonassi S, Znaor A, Ceppi M, et al. An increased micronucleus frequency in peripheral blood lymphocytes predicts the risk of cancer in humans. Carcinogenesis. 2007;28:625–631.

    Article  PubMed  CAS  Google Scholar 

  59. Fenech M, Denham J, Francis W, Morely A. Micronuclei in cytokinesis blocked lymphocytes of cancer patients following fractionated partial-body radiotherapy. Int J Radiat Biol. 1990;57:373–383.

    Article  PubMed  CAS  Google Scholar 

  60. Gantenberg HW, Wuttke K, Streffer C, Muller WU. Micronuclei in human lymphocytes irradiated in vitro or in vivo. Radiat Res. 1991;128:276–281.

    Article  PubMed  CAS  Google Scholar 

  61. Livezey KW, Negorev D, Simon D. Increased chromosomal alterations and micronuclei formation in human hepatoma HepG2 cells transfected with the hepatitis B virus HBX gene. Mutat Res. 2002;505:63–74.

    Article  PubMed  CAS  Google Scholar 

  62. Umegaki K, Fenech M. Cytokinesis-block micronucleus assay in WIL2-NS cells: a sensitive system to detect chromosomal damage induced by reactive oxygen species and activated human neutrophils. Mutagenesis. 2000;15:261–269.

    Article  PubMed  CAS  Google Scholar 

  63. Countryman PI, Heddle JA. The production of micronuclei from chromosome aberrations in irradiated cultures of human lymphocytes. Mutat Res. 1976;41:321–332.

    Article  PubMed  CAS  Google Scholar 

  64. Cliet I, Fournier E, Melcion C, et al. In vivo micronucleus test using mouse hepatocytes. Mutat Res. 1989;216:321–326.

    Article  PubMed  CAS  Google Scholar 

  65. Van Goethem F, Ghahroudi MA, Castelain P, et al. Frequency and DNA content of micronuclei in rat parenchymal liver cells during experimental hepatocarcinogenesis. Carcinogenesis. 1993;14:2397–2406.

    Article  PubMed  Google Scholar 

  66. Fenech M, Holland N, Chang WP, et al. The Human MicroNucleus Project—an international collaborative study on the use of the micronucleus technique for measuring DNA damage in humans. Mutat Res. 1999;428:271–283.

    Article  PubMed  CAS  Google Scholar 

  67. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  PubMed  CAS  Google Scholar 

  68. Bressac B, Kew M, Wands J, Ozturk M. Selective G to T mutations of p53gene in hepatocellular carcinoma from southern Africa. Nature. 1991;350:429–431.

    Article  PubMed  CAS  Google Scholar 

  69. Tudek B. Base excision repair modulation as a risk factor for human cancers. Mol Aspects Med. 2007;28:258–275.

    Article  PubMed  CAS  Google Scholar 

  70. Au WW. Heritable susceptibility factors for the development of cancer. J Radiat Res. 2006;47:13–17.

    Article  Google Scholar 

  71. Cornetta T, Festa F, Testa A, Cozzi R. DNA damage repair and genetic polymorphisms: assessment of individual sensitivity and repair capacity. Int J Radiat Oncol Biol Phys. 2006;66:537–545.

    Article  PubMed  CAS  Google Scholar 

  72. Vettriselvi V, Vijayalakshmi K, Solomon PF. XRCC1 and XPD gene polymorphisms in a South Indian population. Asian Pac J Cancer. 2007;8:283–286.

    CAS  Google Scholar 

  73. Wang G, Zhao Y, Liu X, et al. Allelic loss and gain, but not genomic instability, as the major somatic mutation in primary hepatocellular carcinoma. Genes Chromosomes Cancer. 2001;31:221–227.

    Article  PubMed  Google Scholar 

  74. Okabe H, Ikai I, Matsuo K, et al. Comprehensive allelotype study of hepatocellular carcinoma: potential differences in pathways to hepatocellular carcinoma between hepatitis B virus-positive and -negative tumors. Hepatology. 2000;31:1073–1079.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research work was supported by Bharathiar University and hospitals in and around Coimbatore, India. The author S.M. express her thanks to the Council of Scientific and Industrial Research, New Delhi, India and the author V.B. express his thanks to the Department of Science and Technology, New Delhi, India for their financial support through Research Associateship and DST-Fast Track Young Scientist Fellowship respectively.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Subramaniam Mohana Devi or Vellingiri Balachandar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohana Devi, S., Balachandar, V., Arun, M. et al. Analysis of Genetic Damage and Gene Polymorphism in Hepatocellular Carcinoma (HCC) Patients in a South Indian Population. Dig Dis Sci 58, 759–767 (2013). https://doi.org/10.1007/s10620-012-2409-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-012-2409-8

Keywords

Navigation