Digestive Diseases and Sciences

, Volume 58, Issue 3, pp 744–750 | Cite as

Prospective Markers for Early Diagnosis and Prognosis of Sporadic Pancreatic Ductal Adenocarcinoma

  • Martin Tobi
  • Mijin Kim
  • Douglas H. Weinstein
  • Mary Ann Rambus
  • James Hatfield
  • N. Volkan Adsay
  • Edi Levi
  • Douglas Evans
  • Michael J. Lawson
  • Suzanne Fligiel
Original Article

Abstract

Background and Aim

Sporadic pancreatic ductal adenocarcinoma (PDA) is a highly lethal cancer. No proven screening strategies are available and frequent cross-sectional imaging studies (CT/MRI) are impractical even in patients thought to be at higher risk than the general population. Few PDA biomarkers have been studied prospectively for screening. Here, we prospectively evaluated the Adnab-9 monoclonal antibody in stool, pancreaticobiliary secretions, and tissue for screening and prognostic value in sporadic PDA. We also evaluated the prognostic value of characterized early biomarkers in pancreaticobiliary secretions.

Methods

Adnab-9 diagnostic ability was tested in stool in 249 and 1,132 patients from China and the US, respectively. Immunohistochemistry was performed in 22 tissue samples with Adnab-9 antibody and anti-Defensin 5, a constituent of Paneth cells. Pancreatobiliary secretions were collected from 12 PDA patients and 9 controls. The enriched PCR method was performed to detect K-ras mutations. ELISA was performed with Adnab-9, anti-Her-2/neu, and monoclonal antibody D4 (anti-Reg I).

Results

Adnab-9 alone was diagnostic and prognostic when measured in pancreatic secretions, feces, and tissues of PDA patients compared to controls (p < 0.05). Significantly, Adnab-9 fecal binding can precede the clinical diagnosis by 2.3 years, potentially allowing earlier clinical intervention. In pancreatic secretions, a combination of K-ras and Her-2/neu when appropriately standardized can be diagnostic in 75 % of PDA.

Conclusions

Our study suggests that Adnab-9 may be an effective marker for diagnosis and prognosis of PDA. Adnab-9 may be reflective of the presence of Paneth cells confirmed by Defensin-5 staining. These cells may modulate the biological activity of the cancer and confer a better prognosis.

Keywords

Pancreatic ductal adenocarcinoma (PDA) Adnab-9 monoclonal antibody K-ras Her-2/neu 

References

  1. 1.
    Eheman C, Henley SJ, Ballard-Barbash R, et al. Annual report to the nation on the status of cancer, 1975–2008, featuring cancers associated with excess weight and lack of sufficient physical activity. Cancer. 2012;118:2338–2366. doi:10.1002/cncr.27514.PubMedCrossRefGoogle Scholar
  2. 2.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62:10–29. doi:10.3322/caac.20138.PubMedCrossRefGoogle Scholar
  3. 3.
    Canto MI, Hruban RH, Fishman EK, et al. Frequent detection of pancreatic lesions in asymptomatic high-risk individuals. Gastroenterology. 2012;142:796–804. doi:10.1053/j.gastro.2012.01.005.PubMedCrossRefGoogle Scholar
  4. 4.
    Zubarik R, Gordon SR, Lidofsky SD, et al. Screening for pancreatic cancer in a high-risk population with serum CA 19-9 and targeted EUS: a feasibility study. Gastrointest Endosc. 2011;74:87–95. doi:10.1016/j.gie.2011.03.1235.PubMedCrossRefGoogle Scholar
  5. 5.
    Bunger S, Laubert T, Roblick UJ, Habermann JK. Serum biomarkers for improved diagnostic of pancreatic cancer: a current overview. J Cancer Res Clin Oncol. 2011;137:375–389. doi:10.1007/s00432-010-0965-x.PubMedCrossRefGoogle Scholar
  6. 6.
    Tobi M, Elitsur Y, Moyer MP, et al. Mucosal origin and shedding of an early colonic tumor marker defined by Adnab-9 monoclonal antibody. Scand J Gastroenterol. 1993;28:1025–1034.PubMedCrossRefGoogle Scholar
  7. 7.
    Yuan M, Xhang X, Leu Y, et al. Fecal Adnab-9 binding as a risk marker for colorectal neoplasia. Cancer Lett. 2006;235:48–52. doi:10.1016/j.canlet.2005.03.042.PubMedCrossRefGoogle Scholar
  8. 8.
    Qiao SX, Yuan M, Liu YL, Lin XS, Zhang XP, Tobi M. Detection of gastric cancer and premalignant lesions by novel marker glycoprotein 87 using monoclonal antibody Adnab-9. Cancer Epidemiol Biomarkers Prev. 2003;12:1095–1099.PubMedGoogle Scholar
  9. 9.
    Tobi M, Kaila V, Hassan N, et al. Monoclonal antibody Adnab-9 defines a preneoplastic marker in epithelium at risk for adenocarcinoma of the small intestine. Hum Pathol. 1999;30:467–473.PubMedCrossRefGoogle Scholar
  10. 10.
    Albataineh H, Yordanova V, Bowman J, et al. The use of early and midpoint adenoma-carcinoma sequence biomarkers in prediction of neoplastic progression in patients with a history of colorectal neoplasia. Dig Dis Sci. 2006;51:2213–2219. doi:10.1007/s10620-006-9274-2.PubMedCrossRefGoogle Scholar
  11. 11.
    Tobi M, Hatfield J, Adsay V, et al. Prognostic significance of the labeling of Adnab-9 in pancreatic intraductal papillary mucinous neoplasms. Int J Pancreatol. 2001;29:141–150. doi:10.1385/IJGC:29:3:141.PubMedCrossRefGoogle Scholar
  12. 12.
    Mangray S, King TC. Molecular pathobiology of pancreatic adenocarcinoma. Front Biosci. 1998;3:D1148–D1160.PubMedGoogle Scholar
  13. 13.
    Brugge WR, Lauwers GY, Sahani D, Fernandez-del Castillo C, Warshaw AL. Cystic neoplasms of the pancreas. N Engl J Med. 2004;351:1218–1226. doi:10.1056/NEJMra031623.PubMedCrossRefGoogle Scholar
  14. 14.
    Maitra A, Fukushima N, Takaori K, Hruban RH. Precursors to invasive pancreatic cancer. Adv Anat Pathol. 2005;12:81–91.PubMedCrossRefGoogle Scholar
  15. 15.
    Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N, Depinho RA. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev. 2006;20:1218–1249. doi:10.1101/gad.1415606.PubMedCrossRefGoogle Scholar
  16. 16.
    Moskaluk CA, Hruban RH, Kern SE. p16 and K-ras gene mutations in the intraductal precursors of human pancreatic adenocarcinoma. Cancer Res. 1997;57:2140–2143.PubMedGoogle Scholar
  17. 17.
    Klimstra DS, Longnecker DS. K-ras mutations in pancreatic ductal proliferative lesions. Am J Pathol. 1994;145:1547–1550.PubMedGoogle Scholar
  18. 18.
    Rozenblum E, Schutte M, Goggins M, et al. Tumor-suppressive pathways in pancreatic carcinoma. Cancer Res. 1997;57:1731–1734.PubMedGoogle Scholar
  19. 19.
    Day JD, Digiuseppe JA, Yeo C, et al. Immunohistochemical evaluation of HER-2/neu expression in pancreatic adenocarcinoma and pancreatic intraepithelial neoplasms. Hum Pathol. 1996;27:119–124.PubMedCrossRefGoogle Scholar
  20. 20.
    Schechter AL, Stern DF, Vaidyanathan L, et al. The neu oncogene: an erb-B-related gene encoding a 185,000-Mr tumour antigen. Nature. 1984;312:513–516.PubMedCrossRefGoogle Scholar
  21. 21.
    Yamamoto T, Ikawa S, Akiyama T, et al. Similarity of protein encoded by the human c-erb-B-2 gene to epidermal growth factor receptor. Nature. 1986;319:230–234. doi:10.1038/319230a0.PubMedCrossRefGoogle Scholar
  22. 22.
    Lei S, Appert HE, Nakata B, Domenico DR, Kim K, Howard JM. Overexpression of HER2/neu oncogene in pancreatic cancer correlates with shortened survival. Int J Pancreatol. 1995;17:15–21. doi:10.1007/BF02788354.PubMedGoogle Scholar
  23. 23.
    Ratcliffe N, Terhune PG, Longnecker DS. Small intraductal papillary-mucinous adenomas of the pancreas. Arch Pathol Lab Med. 1996;120:1111–1115.PubMedGoogle Scholar
  24. 24.
    Tobi M, Luo FC, Ronai Z. Detection of K-ras mutation in colonic effluent samples from patients without evidence of colorectal carcinoma. J Natl Cancer Inst. 1994;86:1007–1010.PubMedCrossRefGoogle Scholar
  25. 25.
    Sanchez D, Gmyr V, Kerr-Conte J, et al. Implication of Reg I in human pancreatic duct-like cells in vivo in the pathological pancreas and in vitro during exocrine dedifferentiation. Pancreas. 2004;29:14–21.PubMedCrossRefGoogle Scholar
  26. 26.
    Tezel E, Nagasaka T, Tezel G, et al. REG I as a marker for human pancreatic acinoductular cells. Hepatogastroenterology. 2004;51:91–96.PubMedGoogle Scholar
  27. 27.
    Kim JH, Ho SB, Montgomery CK, Kim YS. Cell lineage markers in human pancreatic cancer. Cancer. 1990;66:2134–2143.PubMedCrossRefGoogle Scholar
  28. 28.
    Goggins M. Molecular markers of early pancreatic cancer. J Clin Oncol. 2005;23:4524–4531. doi:10.1200/JCO.2005.19.711.PubMedCrossRefGoogle Scholar
  29. 29.
    Li D, Xie K, Wolff R, Abbruzzese JL. Pancreatic cancer. Lancet. 2004;363:1049–1057. doi:10.1016/S0140-6736(04)15841-8.PubMedCrossRefGoogle Scholar
  30. 30.
    Talar-Wojnarowska R, Malecka-Panas E. Molecular pathogenesis of pancreatic adenocarcinoma: potential clinical implications. Med Sci Monit. 2006;12:RA186–RA193.PubMedGoogle Scholar
  31. 31.
    Secufferlein T, Adler G. What can be Expected from Tumor Markers in Pancreatic Cancer. In: Dominguez-Munoz JE, ed. Clinical pancreatology for practicing gastroenterologist. Malden: Blackwell; 2005:377–382.Google Scholar
  32. 32.
    Cruz-Monserrate Z, Abd-Elgaliel WR, Grote T, et al. Detection of pancreatic cancer tumours and precursor lesions by cathepsin E activity in mouse models. Gut. 2011;. doi:10.1136/gutjnl-2011-300544.PubMedGoogle Scholar
  33. 33.
    Gold DV, Karanjawala Z, Modrak DE, Goldenberg DM, Hruban RH. PAM4-reactive MUC1 is a biomarker for early pancreatic adenocarcinoma. Clin Cancer Res. 2007;13:7380–7387. doi:10.1158/1078-0432.CCR-07-1488.PubMedCrossRefGoogle Scholar
  34. 34.
    Shaib YH, Davila JA, El-Serag HB. The epidemiology of pancreatic cancer in the United States: changes below the surface. Aliment Pharmacol Ther. 2006;24:87–94. doi:10.1111/j.1365-2036.2006.02961.x.PubMedCrossRefGoogle Scholar
  35. 35.
    Remotti HE, Winner M, Saif MW. Intraductal papillary mucinous neoplasms of the pancreas: clinical surveillance and malignant progression, multifocality and implications of a field-defect. J Pancreas. 2012;13:135–138.PubMedGoogle Scholar
  36. 36.
    Reid-Lombardo KM, Mathis KL, Wood CM, Harmsen WS, Sarr MG. Frequency of extrapancreatic neoplasms in intraductal papillary mucinous neoplasm of the pancreas: implications for management. Ann Surg. 2010;251:64–69. doi:10.1097/SLA.0b013e3181b5ad1e.PubMedCrossRefGoogle Scholar
  37. 37.
    Tobi M, Prabhu S, Gage RE, Orr T, Lawson MJ. Colorectal cancer risk: the impact of evidence of a field effect of carcinogenesis on blinded diagnosis using an anti-adenoma antibody test performed on colonoscopic effluent. Dig Dis Sci. 2002;47:317–321.PubMedCrossRefGoogle Scholar
  38. 38.
    Bhatavdekar JM, Patel DD, Chikhlikar PR, et al. Molecular markers are predictors of recurrence and survival in patients with Dukes B and Dukes C colorectal adenocarcinoma. Dis Colon Rectum. 2001;44:523–533.PubMedCrossRefGoogle Scholar
  39. 39.
    Canto MI. Pancreatic Cancer: Are We Ready to Screen?/Screening in High Risk Patients: Genetic Predisposition. DDW Combined Clinical Symposia, Chicago, IL, 2009.Google Scholar
  40. 40.
    Steinberg WM, Barkin JS, Bradley EL III, et al. Should patients with a strong family history of pancreatic cancer be screened on a periodic basis for cancer of the pancreas? Pancreas. 2009;38:e137–e150. doi:10.1097/MPA.0b013e3181a86b2c.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC (Outside the USA) 2012

Authors and Affiliations

  • Martin Tobi
    • 1
    • 2
    • 3
  • Mijin Kim
    • 2
  • Douglas H. Weinstein
    • 1
  • Mary Ann Rambus
    • 3
  • James Hatfield
    • 3
  • N. Volkan Adsay
    • 3
  • Edi Levi
    • 3
  • Douglas Evans
    • 4
  • Michael J. Lawson
    • 5
  • Suzanne Fligiel
    • 3
  1. 1.Gastroenterology SectionPhiladelphia Veterans Affairs Medical CenterPhiladelphiaUSA
  2. 2.Division of Gastroenterology, Department of MedicineUniversity of Pennsylvania School of MedicinePhiladelphiaUSA
  3. 3.Department of Medicine and Pathology, John D. Dingell Veterans Affairs Medical CenterWayne State University School of MedicineDetroitUSA
  4. 4.M.D. Anderson Cancer CenterHoustonUSA
  5. 5.Kaiser PermanenteUniversity of CaliforniaSacramentoUSA

Personalised recommendations