Advertisement

Digestive Diseases and Sciences

, Volume 57, Issue 5, pp 1171–1180 | Cite as

miR-301a Is a Candidate Oncogene that Targets the Homeobox Gene Gax in Human Hepatocellular Carcinoma

  • Peng Zhou
  • Wei Jiang
  • Lielin Wu
  • Ruimin Chang
  • Kemin Wu
  • Zhiming WangEmail author
Original Article

Abstract

Background

MicroRNAs (miRNA) are a group of noncoding small RNAs that repress mRNA expression or induce mRNA degradation by binding to the 3′-untranslated regions of mRNAs. MiRNAs have been connected closely with the development of cancers such as hepatocellular carcinoma (HCC). However, the overexpression of microRNA-301a (miR-301a) has seldom been connected with tumorigenesis in HCC.

Aims

This study aims to characterize the function of upregulated miR-301a in HCC and show how the downstream growth arrest-specific homeobox (Gax) is negatively regulated by miR-301a.

Methods

The expression of miR-301a and Gax was detected using real-time PCR on HCC tissues and adjacent non-tumorous tissues. The luciferase reporter assay was used to assess Gax as a target of miR-301a. The nuclear factor κB (NF-κB) was measured by western blot after inhibiting miR-301a and enhancing Gax. The functions of miR-301a in vivo in HCC cells were measured by migration and invasion assays and flow cytometry.

Results

MiR-301a was significantly upregulated and Gax was downregulated in HCC samples compared with in the matching nontumoral tissues. Inhibiting miR-301a expression caused the upregulation of Gax and repressed NF-κB expression. We have shown that miR-301a plays an important role in increasing proliferation, migration and invasion and in inhibiting apoptosis of HCC cells.

Conclusions

miR-301a is frequently upregulated in HCC and modulates NF-κB expression by negatively regulating Gax.

Keywords

miR-301a Hepatocellular carcinoma Gax Nuclear factor κB Carcinogenesis 

Notes

Conflict of interest

None.

References

  1. 1.
    Di Bisceglie AM. Issues in screening and surveillance for hepatocellular carcinoma. Gastroenterology. 2004;127:S104–S107.PubMedCrossRefGoogle Scholar
  2. 2.
    El-Serag HB, Marrero JA, Rudolph L, Reddy KR. Diagnosis and treatment of hepatocellular carcinoma. Gastroenterology. 2008;134:1752–1763.PubMedCrossRefGoogle Scholar
  3. 3.
    Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–390.PubMedCrossRefGoogle Scholar
  4. 4.
    Teufel A, Staib F, Kanzler S, Weinmann A, Schulze-Bergkamen H, Galle PR. Genetics of hepatocellular carcinoma. World J Gastroenterol. 2007;13:2271–2282.PubMedGoogle Scholar
  5. 5.
    Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294:853–858.PubMedCrossRefGoogle Scholar
  6. 6.
    Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–355.PubMedCrossRefGoogle Scholar
  7. 7.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–297.PubMedCrossRefGoogle Scholar
  8. 8.
    Farh KK, Grimson A, Jan C, et al. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science. 2005;310:1817–1821.PubMedCrossRefGoogle Scholar
  9. 9.
    Iorio MV, Ferracin M, Liu CG, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65:7065–7070.PubMedCrossRefGoogle Scholar
  10. 10.
    Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 2004;64:3753–3756.PubMedCrossRefGoogle Scholar
  11. 11.
    Murakami Y, Yasuda T, Saigo K, et al. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene. 2006;25:2537–2545.PubMedCrossRefGoogle Scholar
  12. 12.
    Ciafrè SA, Galardi S, Mangiola A, et al. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun. 2005;334:1351–1358.PubMedCrossRefGoogle Scholar
  13. 13.
    Guo J, Miao Y, Xiao B, et al. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol. 2009;24:652–657.PubMedCrossRefGoogle Scholar
  14. 14.
    Bandrés E, Cubedo E, Agirre X, et al. Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer. 2006;5:29.PubMedCrossRefGoogle Scholar
  15. 15.
    Miska EA. How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev. 2005;15:563–568.PubMedCrossRefGoogle Scholar
  16. 16.
    Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011;39:D152–D157.PubMedCrossRefGoogle Scholar
  17. 17.
    Lu Z, Li Y, Takwi A, et al. miR-301a as an NF-κB activator in pancreatic cancer cells. EMBO J. 2011;30:57–67.PubMedCrossRefGoogle Scholar
  18. 18.
    Cao G, Huang B, Liu Z, et al. Intronic miR-301 feedback regulates its host gene, ska2, in A549 cells by targeting MEOX2 to affect ERK/CREB pathways. Biochem Biophys Res Commun. 2010;396:978–982.PubMedCrossRefGoogle Scholar
  19. 19.
    Shi W, Gerster K, Alajez NM, et al. MicroRNA-301 mediates proliferation and invasion in human breast cancer. Cancer Res. 2011;71:2926–2937.PubMedCrossRefGoogle Scholar
  20. 20.
    Jiang J, Gusev Y, Aderca I, et al. Association of microRNA expression in hepatocellular carcinomas with hepatitis infection, cirrhosis, and patient survival. Clin Cancer Res. 2008;14:419–427.PubMedCrossRefGoogle Scholar
  21. 21.
    Witzenbichler B, Kureishi Y, Luo Z, Le Roux A, Branellec D, Walsh K. Regulation of smooth muscle cell migration and integrin expression by the Gax transcription factor. J Clin Invest. 1999;104:1469–1480.PubMedCrossRefGoogle Scholar
  22. 22.
    Gorski DH, Leal AJ. Inhibition of endothelial cell activation by the homeobox gene Gax. J Surg Res. 2003;111:91–99.PubMedCrossRefGoogle Scholar
  23. 23.
    Smith RC, Branellec D, Gorski DH, et al. p21CIP1 mediated inhibition of cell proliferation by overexpression of the Gax homeodomain gene. Genes Dev. 1997;11:1674–1689.PubMedCrossRefGoogle Scholar
  24. 24.
    Patel S, Leal AD, Gorski DH. The homeobox gene Gax inhibits angiogenesis through inhibition of nuclear factor-kappaB-dependent endothelial cell gene expression. Cancer Res. 2005;65:1414–1424.PubMedCrossRefGoogle Scholar
  25. 25.
    Frullanti E, Galvan A, Falvella FS, et al. Multiple genetic loci modulate lung adenocarcinoma clinical staging. Clin Cancer Res. 2011;17:2410–2416. Epub. 01/17/2011.Google Scholar
  26. 26.
    Ohshima J, Haruta M, Arai Y, et al. Two candidate tumor suppressor genes, MEOX2 and SOSTDC1, identified in a 7p21 homozygous deletion region in a Wilms tumor. Genes Chromosomes Cancer. 2009;48:1037–1050.PubMedCrossRefGoogle Scholar
  27. 27.
    Ma X, Becker Buscaglia LE, Barker JR, Li Y. MicroRNAs in NF-kappaB signaling. J Mol Cell Biol. 2011;3:159–166.PubMedCrossRefGoogle Scholar
  28. 28.
    Pikarsky E, Porat RM, Stein I, et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature. 2004;431:461–466.PubMedCrossRefGoogle Scholar
  29. 29.
    Chen Y, Gorski DH. Regulation of angiogenesis through a microRNA (miR-130a) that down-regulates antiangiogenic homeobox genes GAX and HOXA5. Blood. 2008;111:1217–1226.PubMedCrossRefGoogle Scholar
  30. 30.
    Chen Y, Banda M, Speyer CL, Smith JS, Rabson AB, Gorski DH. Regulation of the expression and activity of the antiangiogenic homeobox gene GAX/MEOX2 by ZEB2 and microRNA-221. Mol Cell Biol. 2010;30:3902–3913.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Peng Zhou
    • 1
  • Wei Jiang
    • 1
  • Lielin Wu
    • 1
  • Ruimin Chang
    • 1
  • Kemin Wu
    • 1
  • Zhiming Wang
    • 1
    Email author
  1. 1.Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaChina

Personalised recommendations