Skip to main content

Advertisement

Log in

Epithelial Expression of Vasoactive Intestinal Peptide in Ulcerative Colitis: Down-Regulation in Markedly Inflamed Colon

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Vasoactive intestinal peptide (VIP) has a number of important effects in intestinal physiology and pathology, including in ulcerative colitis (UC). The expression patterns of the predominant VIP receptor in the mucosa (the VPAC1 receptor) are unknown for the mucosa in UC. It is assumed that the sources of VIP in the intestine are the innervation and the inflammatory cells.

Aims

The VIP and VPAC1 receptor expression patterns in the epithelial layer of UC and non-UC patients were examined in the present study. The influence of marked inflammation of the mucosa was evaluated.

Methods

Specimens of the human colon, including the colon of UC patients, were examined concerning expressions of VIP and VPAC1 receptor, focusing on the epithelial layer. Immunohistochemistry and in situ hybridization were utilized.

Results

There were VIP mRNA reactions and also marked VPAC1 receptor immunoreactions in the normal and slightly/moderately affected epithelium. VIP mRNA reactions were not detected and VPAC1 immunoreactions were minimal in response to marked mucosal derangement.

Conclusions

The findings suggest that there is a local production of VIP in the epithelial cells in normal and slightly/moderately inflamed mucosa but not in severely inflamed mucosa. Furthermore, a marked downregulation in VPAC1 receptor expressions occurs in the epithelium in severe UC. Based on the knowledge that VIP can have trophic, healing and anti-inflammatory effects, it is likely that the decrease in VIP mRNA and VPAC1 receptor reactions seen in severely affected mucosa in UC may be associated with adverse effects on intestinal function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abad C, Martinez C, Juarranz MG, et al. Therapeutic effects of vasoactive intestinal peptide in the trinitrobenzene sulfonic acid mice model of Crohn’s disease. Gastroenterology. 2003;124:961–971.

    Article  PubMed  CAS  Google Scholar 

  2. Said SI, Mutt V. Polypeptide with broad biological activity: isolation from small intestine. Science. 1970;18:1217–1218.

    Article  Google Scholar 

  3. Harmar AJ, Arimura A, Gozes I, et al. International Union of Pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Pharmacol Rev. 1998;50:265–270.

    PubMed  CAS  Google Scholar 

  4. Schulz S, Röcken C, Mawrin C, et al. Immunocytochemical identification of VPAC1, VPAC2, and PAC1 receptors in normal and neoplastic human tissues with subtype-specific antibodies. Clin Cancer Res. 2004;10:8235–8242.

    Article  PubMed  CAS  Google Scholar 

  5. Belai A, Boulos PB, Robson T, et al. Neurochemical coding in the small intestine of patients with Crohn’s disease. Gut. 1997;40:767–774.

    Article  PubMed  CAS  Google Scholar 

  6. Todorovic V, Janic B, Koko V, et al. Colonic vasoactive intestinal polypeptide (VIP) in ulcerative colitis-a radioimmunoassay and immunohistochemical study. Hepatogastroenterology. 1996;43:483–488.

    PubMed  CAS  Google Scholar 

  7. Delgado M. VIP: a very important peptide in T helper differentiation. Trends Immunol. 2003;24:221–224.

    Article  PubMed  CAS  Google Scholar 

  8. Reinecke M, Müller C, Segner H. An immunohistochemical analysis of the ontogeny, distribution and coexistence of 12 regulatory peptides and serotonin in endocrine cells and nerve fibers of the digestive tract of the turbot, Scophthalmus maximus (Teleostei). Anat Embryol (Berl). 1997;195:87–101.

    Article  CAS  Google Scholar 

  9. Rudholm T, Wallin B, Theodorsson E, et al. Release of regulatory gut peptides somatostatin, neurotensin and vasoactive intestinal peptide by acid and hyperosmolal solutions in the intestine in conscious rats. Regul Pept. 2009;152:8–12.

    Article  PubMed  CAS  Google Scholar 

  10. Lolova IS, Davidoff MS, Itzev DE. Histological and immunocytochemical data on the differentiation of intestinal endocrine cells in human fetus. Acta Physiol Pharmacol Bulg. 1998;23:61–71.

    PubMed  CAS  Google Scholar 

  11. Chalastras T, Nicolopoulou-Stamati P, Patsouris E, et al. Expression of substance P, vasoactive intestinal peptide and heat shock protein 70 in nasal mucosal smears of patients with allergic rhinitis: investigation using a liquid-based method. J Laryngol Otol. 2008;122:700–706.

    Article  PubMed  CAS  Google Scholar 

  12. Chiwakata C, Brackmann B, Hunt N, et al. Tachykinin (substance-P) gene expression in Leydig cells of the human and mouse testis. Endocrinology. 1991;128:2441–2448.

    Article  PubMed  CAS  Google Scholar 

  13. Watanabe M, Nakayasu K, Iwatsu M, et al. Endogenous substance P in corneal epithelial cells and keratocytes. Jpn J Ophthalmol. 2002;46:616–620.

    Article  PubMed  CAS  Google Scholar 

  14. Ubink R, Calza L, Hökfelt T. ‘Neuro’-peptides in glia: Focus on NPY and galanin. Trends Neurosci. 2003;26:604–609.

    Article  PubMed  CAS  Google Scholar 

  15. Polak JM, Bodian C. The neuroendocrine design of the gut. J Clin Endocrinol Metab. 1979;8:313.

    Article  CAS  Google Scholar 

  16. Goll R, Poulsen JH, Schmidt P, et al. Peptide-evoked release of amylase from isolated acini of the rat parotid gland. Regul Pept. 1994;51:237–254.

    Article  PubMed  CAS  Google Scholar 

  17. Gressens P, Hill JM, Gozes I, et al. Growth factor function of vasoactive intestinal peptide in whole cultured mouse embryos. Nature. 1993;362:155–158.

    Article  PubMed  CAS  Google Scholar 

  18. Arciszewski MB, Sand E, Ekblad E. Vasoactive intestinal peptide rescues cultured rat myenteric neurons from lipopolysaccharide induced cell death. Regul Pept. 2008;146:218–223.

    Article  PubMed  CAS  Google Scholar 

  19. Delgado M, Varela N, Gonzalez-Rey E. Vasoactive intestinal peptide protects against beta-amyloid-induced neurodegeneration by inhibiting microglia activation at multiple levels. Glia. 2008;56:1091–1103.

    Article  PubMed  Google Scholar 

  20. Moriez R, Abdo H, Chaumette T, et al. Neuroplasticity and neuroprotection in enteric neurons: role of epithelial cells. Biochem Biophys Res Commun. 2009;382:577–582.

    Article  PubMed  CAS  Google Scholar 

  21. Erin N, Ulusoy O. Differentiation of neuronal from non-neuronal substance P. Regul Pept. 2009;152:108–113.

    Article  PubMed  CAS  Google Scholar 

  22. Hansson M, Forsgren S. Immunoreactive atrial and brain natriuretic peptides are co-localized in Purkinje fibres but not in the innervation of the bovine heart conduction system. Histochem J. 1995;27:222–230.

    PubMed  CAS  Google Scholar 

  23. Panoskaltsis-Mortari A, Bucy RP. In situ hybridization with digoxigenin-labeled RNA probes: facts and artifacts. Biotechniques. 1995;18:300–307.

    PubMed  CAS  Google Scholar 

  24. Jönsson M, Norrgård O, Forsgren S. Presence of a marked nonneuronal cholinergic system in human colon: study of normal colon and colon in ulcerative colitis. Inflamm Bowel Dis. 2007;13:1347–1356.

    Article  PubMed  Google Scholar 

  25. Danielson P, Alfredson H, Forsgren S. In situ hybridization studies confirming recent findings of the existence of a local non-neuronal catecholamine production in human patellar tendinosis. Microsc Res Tech. 2007;10:908–911.

    Article  Google Scholar 

  26. Sjölund K, Schaffalitzky OB, Muckadell DE, et al. Peptide-containing nerve fibers in the gut wall in Crohn’s disease. Gut. 1983;24:724–733.

    Article  PubMed  Google Scholar 

  27. Kubota Y, Petras RE, Ottaway CA, et al. Colonic vasoactive intestinal peptide nerves in inflammatory bowel disease. Gastroenterology. 1992;102:1242–1251.

    PubMed  CAS  Google Scholar 

  28. Keränen U, Järvinen H, Kärkkäinen P, et al. Substance P-an underlying factor for pouchitis? Prospective study of substance P- and vasoactive intestinal polypeptide-immunoreactive innervation and mast cells. Dig Dis Sci. 1996;41:1665–1671.

    Article  PubMed  Google Scholar 

  29. Höckerfelt U, Henriksson R, Franzen L, Norrgård Ö, Forsgren S. Irradiation induces marked immunohistochemical expression of vasoactive intestinal peptide in colonic mucosa of man. Dig Dis Sci. 1999;44:393–401.

    Article  PubMed  Google Scholar 

  30. Lee CM, Kumar RK, Lubowski DZ, et al. Neuropeptides and nerve growth in inflammatory bowel diseases: a quantitative immunohistochemical study. Dig Dis Sci. 2002;47:495–502.

    Article  PubMed  CAS  Google Scholar 

  31. Lara-Marquez M, O’Dorisio M, O’Dorisio T, et al. Selective gene expression and activation-dependent regulation of vasoactive intestinal peptide receptor type 1 and type 2 in human T cells. J Immunol. 2001;166:2522–2530.

    PubMed  CAS  Google Scholar 

  32. Simopoulos C, Gaffen JD, Bennett A. Effects of gastrointestinal hormones on the growth of human intestinal epithelial cells in vitro. Gut. 1989;30:600–604.

    Article  PubMed  CAS  Google Scholar 

  33. Toumi F, Neunlist M, Denis MG, et al. Vasoactive intestinal peptide induces IL-8 production in human colonic epithelial cells via MAP kinase-dependent and PKA-independent pathways. Biochem Biophys Res Commun. 2004;317:187–191.

    Article  PubMed  CAS  Google Scholar 

  34. Jönsson M, Norrgård O, Hansson M, et al. Decrease in binding for the neuropeptide VIP in response to marked inflammation of the mucosa in ulcerative colitis. Ann NY Acad Sci. 2007;1107:280–289.

    Article  PubMed  Google Scholar 

  35. O’Morain C, Bishop AE, McGregor GP, et al. Vasoactive intestinal peptide concentrations and immunocytochemical studies in rectal biopsies from patients with inflammatory bowel disease. Gut. 1984;25:57–61.

    Article  PubMed  Google Scholar 

  36. Koch TR, Carney JA, Go VL. Distribution and quantitation of gut neuropeptides in normal intestine and inflammatory bowel diseases. Dig Dis Sci. 1987;32:369–376.

    Article  PubMed  CAS  Google Scholar 

  37. Kim WK, Kan Y, Ganea D, et al. Vasoactive intestinal peptide and pituitary adenylyl cyclase-activating polypeptide inhibit tumor necrosis factor-alpha production in injured spinal cord and in activated microglia via a camp-dependent pathway. J Neurosci. 2000;20:3622–3630.

    PubMed  CAS  Google Scholar 

  38. Gonzalez-Rey E, Delgado M. Therapeutic treatment of experimental colitis with regulatory dendritic cells generated with vasoactive intestinal peptide. Gastroenterology. 2006;131:1799–1811.

    Article  PubMed  CAS  Google Scholar 

  39. Arranz A, Abad C, Juarranz Y, et al. Vasoactive intestinal peptide as a healing mediator in Crohn’s disease. Neuroimmunomodulation. 2008;15:46–53.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge U. Hedlund for excellent technical services. Lions Cancer Foundation and The Faculty of Medicine, Umeå University, provided financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sture Forsgren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jönsson, M., Norrgård, Ö. & Forsgren, S. Epithelial Expression of Vasoactive Intestinal Peptide in Ulcerative Colitis: Down-Regulation in Markedly Inflamed Colon. Dig Dis Sci 57, 303–310 (2012). https://doi.org/10.1007/s10620-011-1985-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-011-1985-3

Keywords

Navigation