Skip to main content

Advertisement

Log in

Enteroendocrine and Neuronal Mechanisms in Pathophysiology of Acute Infectious Diarrhea

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

While enterocyte secretion is the predominant mechanism considered responsible for secretory diarrhea in response to acute enteric infections, there are several lines of evidence that support alternative mechanisms controlling fluid and electrolyte secretion in diarrhea.

Aim

To review enteroendocrine and neuronal mechanisms that participate in the development of acute infectious diarrhea.

Recent Advances

Acute infectious diarrheas due to bacterial toxins (e.g., cholera, E. coli heat-stable enterotoxin, C. difficile) and rotavirus are all associated with secretion of transmitters from enteroendocrine cells (e.g., 5-HT) and activation of afferent neurons that stimulate submucosal secretomotor neurons. The latter secrete acetylcholine (which binds to muscarinic receptors on epithelial cells) and VIP. Involvement of nerves was demonstrated by inhibition of bacterial toxin-induced secretion by hexamethonium (nicotinic), tetrodotoxin (Na+ channel blocker), and lidocaine (visceral/mucosal afferents). Nicotinic receptors are present on secretomotoneurons and these are activated by release of acetylcholine from enteric interneurons or extrinsic efferent fibers. Specific organisms also modify other mechanisms that may contribute to development of acute diarrhea. Thus, mucin secretion, activation of motor mechanisms, increased mucosal permeability and inhibition of bile acid absorption have been reported in specific types of acute infectious diarrhea.

Conclusion

New therapies targeting neural and transmitter mediation including 5-HT, VIP, NPY, as well as toxin receptors and channels activated during acute infectious diarrhea could usher in a novel approach to enhancing glucose–electrolyte solutions used in the treatment of acute diarrhea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

5-HT:

Serotonin

ACh:

Acetyl choline

BAC:

Benzalkonium chloride

cAMP:

Cyclic adenosine monophosphate

CFTR:

Cystic fibrosis transmembrane conductance regulator

cGMP:

Cyclic guanosine monophosphate

CGRP:

Calcitonin gene-related peptide

CT:

Cholera toxin

GCC:

Guanylate cyclase C

GM1 :

Ganglioside membrane receptor

IFN:

Interferon

Isc:

Short-circuit current

MAPC:

Migrating action potential complex

NK1 :

Neurokinin 1

NPY:

Neuropeptide Y

STa:

E. coli heat-stable enterotoxin

TTX:

Tetrodotoxin

VIP:

Vasoactive intestinal peptide

References

  1. Navaneethan U, Giannella RA. Mechanisms of infectious diarrhea. Nat Clin Pract Gastroenterol Hepatol. 2008;5:637–647.

    Article  PubMed  Google Scholar 

  2. Lucas ML. Diarrhoeal disease through enterocyte secretion: a doctrine untroubled by proof. Exp Physiol. 2010;95:479–484.

    Article  PubMed  Google Scholar 

  3. Lucas ML, Thom MM, Bradley JM, O’Reilly NF, McIlvenny TJ, Nelson YB. Escherichia coli heat stable (STa) enterotoxin and the upper small intestine: lack of evidence in vivo for net fluid secretion. J Membr Biol. 2005;206:29–42.

    Article  PubMed  CAS  Google Scholar 

  4. Flagella M, Clarke LL, Miller ML, et al. Mice lacking the basolateral Na-K-2Cl cotransporter have impaired epithelial chloride secretion and are profoundly deaf. J Biol Chem. 1999;274:26946–26955.

    Article  PubMed  CAS  Google Scholar 

  5. Osaka M, Fujita T, Yanatori Y. On the possible role of intestinal hormones as the diarrhoeagenic messenger in cholera. Virchows Arch B Cell Pathol. 1975;18:287–296.

    PubMed  CAS  Google Scholar 

  6. Gwynne RM, Ellis M, Sjovall H, Bornstein JC. Cholera toxin induces sustained hyperexcitability in submucosal secretomotor neurons in guinea pig jejunum. Gastroenterology. 2009;136:299–308.

    Article  PubMed  Google Scholar 

  7. Nilsson O, Cassuto J, Larsson PA, et al. 5-Hydroxytryptamine and cholera secretion: a histochemical and physiological study in cats. Gut. 1983;24:542–548.

    Article  PubMed  CAS  Google Scholar 

  8. Bearcroft CP, Perrett D, Farthing MJ. 5-Hydroxytryptamine release into human jejunum by cholera toxin. Gut. 1996;39:528–531.

    Article  PubMed  CAS  Google Scholar 

  9. Cassuto J, Jodal M, Tuttle R, Lundgren O. The effect of lidocaine on the secretion induced by cholera toxin in the cat small intestine. Experientia. 1979;35:1467–1468.

    Article  PubMed  CAS  Google Scholar 

  10. Cassuto J, Jodal M, Tuttle R, Lundgren O. On the role of intramural nerves in the pathogenesis of cholera toxin-induced intestinal secretion. Scand J Gastroenterol. 1981;16:377–384.

    Article  PubMed  CAS  Google Scholar 

  11. Cassuto J, Fahrenkrug J, Jodal M, Tuttle R, Lundgren O. Release of vasoactive intestinal polypeptide from the cat small intestine exposed to cholera toxin. Gut. 1981;22:958–963.

    Article  PubMed  CAS  Google Scholar 

  12. Hubel KA. Intestinal nerves and ion transport: stimuli, reflexes, and responses. Am J Physiol. 1985;248:G261–G271.

    PubMed  CAS  Google Scholar 

  13. Cassuto J, Siewert A, Jodal M, Lundgren O. The involvement of intramural nerves in cholera toxin induced intestinal secretion. Acta Phys Scand. 1983;117:195–202.

    Article  CAS  Google Scholar 

  14. Krause WJ, Currie MG, Forte LR, et al. Distribution of heat-stable enterotoxin/guanylin receptors in the intestinal tract of man and other mammals. J Anatomy. 1994;184:407–417.

    CAS  Google Scholar 

  15. Charney AN, Eqnor RW, Alexander-Chacko JT, Zaharia V, Mann EA, Giannella RA. Effect of E. coli heat-stable enterotoxin on colonic transport in guanylyl cyclase C receptor-deficient mice. Am J Physiol. 2001;280:G216–G221.

    CAS  Google Scholar 

  16. Peterson JW, Whipp SC. Comparison of the mechanisms of action of cholera toxin and the heat-stable enterotoxins of Escherichia coli. Infect Immun. 1995;63:1452–1461.

    PubMed  CAS  Google Scholar 

  17. Neunlist M, Barouk J, Michel K, et al. Toxin B of Clostridium difficile activates human VIP submucosal neurons, in part via an IL-1beta-dependent pathway. Am J Physiol. 2003;285:G1049–G1055.

    CAS  Google Scholar 

  18. Lundgren O, Peregrin AT, Persson K, Kordasti S, Uhnoo I, Svensson L. Role of the enteric nervous system in the fluid and electrolyte secretion of rotavirus diarrhea. Science. 2000;287:491–495.

    Article  PubMed  CAS  Google Scholar 

  19. Lundgren O. Enteric nerves and diarrhoea. Pharmacol Toxicol. 2002;90:109–120.

    Article  PubMed  CAS  Google Scholar 

  20. Jodal M, Wingren U, Jansson M, Heidemann M, Lundgren O. Nerve involvement in fluid transport in the inflamed rat jejunum. Gut. 1993;34:1526–1530.

    Article  PubMed  CAS  Google Scholar 

  21. McGuckin MA, Lindén SK, Sutton P, Florin TH. Mucin dynamics and enteric pathogens. Nat Rev Microbiol. 2011;9:265–278.

    Article  PubMed  CAS  Google Scholar 

  22. Epple HJ, Kreusel KM, Hanski C, Schulzke JD, Riecken EO, Fromm M. Differential stimulation of intestinal mucin secretion by cholera toxin and carbachol. Pflugers Arch. 1997;433:638–647.

    Article  PubMed  CAS  Google Scholar 

  23. Lencer WI, Reinhart FD, Neutra MR. Interaction of cholera toxin with cloned human goblet cells in monolayer culture. Am J Physiol. 1990;258:G96–G102.

    PubMed  CAS  Google Scholar 

  24. Cohen MB, Witte DP, Hawkins JA, Currie MG. Immunohistochemical localization of guanylin in the rat small intestine and colon. Biochem Biophys Res Commun. 1995;209:803–808.

    Article  PubMed  CAS  Google Scholar 

  25. Li Z, Taylor-Blake B, Light AR, Goy MF. Guanylin, an endogenous ligand for C-type guanylate cyclase, is produced by goblet cells in the rat intestine. Gastroenterology. 1995;109:1863–1875.

    Article  PubMed  CAS  Google Scholar 

  26. Huang CT, Woodward WE, Hornick RB, Rodriguez JT, Nichols BL. Fecal steroids in diarrhea. I. Acute shigellosis. Am J Clin Nutr. 1976;29:949–955.

    PubMed  CAS  Google Scholar 

  27. Huang CT, Levine MM, Daoud GS, Nalin DR, Nichols BL. Fecal steroids in diarrhea. IV. Cholera. Lipids. 1982;17:612–616.

    Article  PubMed  CAS  Google Scholar 

  28. Peregrin AT, Ahlman H, Jodal M, Lundgren O. Involvement of serotonin and calcium channels in the intestinal fluid secretion evoked by bile salt and cholera toxin. Br J Pharmacol. 1999;127:887–894.

    Article  PubMed  CAS  Google Scholar 

  29. Jodal M, Holmgren S, Lundgren O, Sjöqvist A. Involvement of the myenteric plexus in the cholera toxin-induced net fluid secretion in the rat small intestine. Gastroenterology. 1993;105:1286–1293.

    Article  PubMed  CAS  Google Scholar 

  30. Chen RY, Li DS, Guth PH. Role of calcitonin gene-related peptide in capsaicin-induced gastric submucosal arteriolar dilation. Am J Physiol. 1992;262:H1350–H1355.

    PubMed  CAS  Google Scholar 

  31. Mathias JR, Carlson GM, DiMarino AJ, Bertiger G, Morton HE, Cohen S. Intestinal myoelectric activity in response to live Vibrio cholerae and cholera enterotoxin. J Clin Invest. 1976;58:91–96.

    Article  PubMed  CAS  Google Scholar 

  32. Nocerino A, Iafusco M, Guandalini S. Cholera toxin-induced small intestinal secretion has a secretory effect on the colon of the rat. Gastroenterology. 1995;108:34–39.

    Article  PubMed  CAS  Google Scholar 

  33. Mathias JR, Nogueira J, Martin JL, Carlson GM, Giannella RA. Escherichia coli heat-stable toxin: its effect on motility of the small intestine. Am J Physiol. 1982;242:G360–G363.

    PubMed  CAS  Google Scholar 

  34. Flamant M, Aubert PH, Rolli-Derkinderen M. Enteric glia protect against Shigella flexneri invasion in intestinal epithelial cells: a role for S-nitrosogluthatione. Gut. 2011;60:476–484.

    Article  Google Scholar 

  35. Zuckerman M, Watts M, Bhat B, Ho H. Intestinal permeabilioty to [51Cr]EDTA in infectious diarrhea. Dig Dis Sci. 1993;38:1651–1657.

    Article  PubMed  CAS  Google Scholar 

  36. Hering N, Richter J, Krug S. Yersinia enterocolitica induces epithelial barrier dysfunction through regional tight junction changes in colonic HT-29/B6 cell monolayers. Lab Invest. 2011;91:310–324.

    Article  PubMed  CAS  Google Scholar 

  37. Lejeune M, Moreau F, Chadee K. Prostaglandin E2 produced by Entamoeba histolytics signals via EP4 receptor and alters claudin-4 to increase ion permeability of tight junctions. Am J Path. 2011;179:807–818.

    Article  PubMed  CAS  Google Scholar 

  38. Fasano A, Baudry B, Pumplin D. Vibrio cholerae produces a second enterotoxin, which affects intestinal tight junctions. Proc Natl Acad Sci USA. 1991;88:5242–5246.

    Article  PubMed  CAS  Google Scholar 

  39. Foong JP, Parry LJ, Bornstein JC. Activation of neuronal SST1 and SST2 receptors decreases neurogenic secretion in the guinea-pig jejunum. Neurogastroenterol Motil. 2010;22:1209–1216.

    Article  PubMed  CAS  Google Scholar 

  40. Keast JR, Furness JB, Costa M. Investigations of nerve populations influencing ion transport that can be stimulated electrically, by serotonin and by a nicotinic agonist. Naunyn Schmiedebergs Arch Pharmacol. 1985;331:260–266.

    Article  PubMed  CAS  Google Scholar 

  41. Yang N, Liu SM, Zheng LF, et al. Activation of submucosal 5-HT(3) receptors elicits a somatostatin-dependent inhibition of ion secretion in rat colon. Br J Pharmacol. 2010;159:1623–1625.

    Article  PubMed  CAS  Google Scholar 

  42. Michel K, Zeller F, Langer R, et al. Serotonin excites neurons in the human submucous plexus via 5-HT3 receptors. Gastroenterology. 2005;128:1317–1326.

    Article  PubMed  CAS  Google Scholar 

  43. Kellum JM, Albuquerque FC, Stoner MC, Harris RP. Stroking human jejunal mucosa induces 5-HT release and Cl- secretion via afferent neurons and 5-HT4 receptors. Am J Physiol. 1999;277:G515–G520.

    PubMed  CAS  Google Scholar 

  44. Bearcroft CP, Andre EA, Farthing MJ. In vivo effects of the 5-HT3 antagonist alosetron on basal and cholera toxin-induced secretion in the human jejunum: a segmental perfusion study. Aliment Pharmacol Ther. 1997;11:1109–1114.

    Article  PubMed  CAS  Google Scholar 

  45. Hinterleitner TA, Petritsch W, Dimsity G, Berard H, Lecomte JM, Krejs GJ. Acetorphan prevents cholera-toxin-induced water and electrolyte secretion in the human jejunum. Eur J Gastroenterol Hepatol. 1997;9:887–891.

    PubMed  CAS  Google Scholar 

  46. Kojima S, Uchida K, Sasaki K, Sunagawa M, Ohno Y, Kamikawa Y. The suppressant effect of GEA3162 on spontaneous serotonin release from human colonic mucosa in vitro. Eur J Pharmacol. 2006;550:162–165.

    Article  PubMed  CAS  Google Scholar 

  47. Banks MR, Farthing MJ, Robberecht P, Burleigh DE. Antisecretory actions of a novel vasoactive intestinal polypeptide (VIP) antagonist in human and rat small intestine. Br J Pharmacol. 2005;144:994–1001.

    Article  PubMed  CAS  Google Scholar 

  48. Souli A, Chariot J, Voisin T, et al. Several receptors mediate the antisecretory effect of peptide YY, neuropeptide Y, and pancreatic polypeptide on VIP-induced fluid secretion in the rat jejunum in vivo. Peptides. 1997;18:551–557.

    Article  PubMed  CAS  Google Scholar 

  49. Moriya R, Shirakura T, Hirose H, Kanno T, Suzuki J, Kanatani A. NPY Y2 receptor agonist PYY(3–36) inhibits diarrhea by reducing intestinal fluid secretion and slowing colonic transit in mice. Peptides. 2010;31:671–675.

    Article  PubMed  CAS  Google Scholar 

  50. Pickes J, Mitchell D, Liu J, et al. Nonspanning bivalent ligands as improved surface receptor binding inhibitors of the cholera toxin B pentamer. Chem Biol. 2004;11:1205–1215.

    Article  Google Scholar 

  51. Thiagarajah J, Verkman AS. New drug targets for cholera therapy. Trends Pharmacol Sci. 2005;26:172–175.

    Article  PubMed  CAS  Google Scholar 

  52. Ma T, Thiagarajah J, Yang H, et al. Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxin-induced intestinal fluid secretion. J Clin Invest. 2002;110:1651–1658.

    PubMed  CAS  Google Scholar 

  53. Munprasat C, Sonawane N, Salinas D, Taddei A, Galietta L, Verkman A. Discovery of glycine hydrazide pore-occluding CFTR inhibitors: mechanism, structure-activity analysis, and in vivo efficacy. J Gen Physiol. 2004;124:125–137.

    Article  Google Scholar 

  54. Camilleri M, Murphy R, Chadwick VS. Pharmacological inhibition of chenodeoxycholic acid-induced secretion of fluid and mucus in the rabbit colon. Dig Dis Sci. 1982;27:865–869.

    Article  PubMed  CAS  Google Scholar 

  55. Isolauri E, Vähäsarja V, Vesikari T. Effect of cholestyramine on acute diarrhoea in children receiving rapid oral rehydration and full feedings. Ann Clin Res. 1986;18:99–102.

    PubMed  CAS  Google Scholar 

  56. Vesikari T, Isolauri E. A comparative trial of cholestyramine and loperamide for acute diarrhoea in infants treated as outpatients. Acta Paediatr Scand. 1985;74:650–654.

    Article  PubMed  CAS  Google Scholar 

  57. Odunsi-Shiyanbade ST, Camilleri M, McKinzie S, et al. Effects of chenodeoxycholate and a bile acid sequestrant, colesevelam, on intestinal transit and bowel function. Clin Gastroenterol Hepatol. 2010;8:159–165.

    Article  PubMed  CAS  Google Scholar 

  58. Naftalin R, Simmons N. The effects of theophylline and choleragen on sodium and chloride ion movements within isolated rabbit ileum. J Physiol. 1979;290:331–350.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dr. M. Camilleri is funded by grant RO1-DK079866 from National Institutes of Health. The excellent secretarial support of Mrs. Cindy Stanislav is gratefully acknowledged.

Conflict of interest

There are no relevant financial conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Camilleri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camilleri, M., Nullens, S. & Nelsen, T. Enteroendocrine and Neuronal Mechanisms in Pathophysiology of Acute Infectious Diarrhea. Dig Dis Sci 57, 19–27 (2012). https://doi.org/10.1007/s10620-011-1939-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-011-1939-9

Keywords

Navigation