Skip to main content
Log in

Prevention of Induced Colitis in Mice by the Ras Antagonist Farnesylthiosalicylic Acid

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Ras proteins are crucial for cell differentiation and proliferation. Targeting Ras with farnesylthiosalicylic acid (FTS), a Ras antagonist, has been suggested as a therapeutic strategy in proliferative and inflammatory diseases.

Aims

To examine the role of Ras and the therapeutic potential of FTS in experimental colitis.

Methods

Colitis was induced in 26 mice by adding 2.5% dextran sodium sulfate to their drinking water for 7 days during which 12 study mice were treated with FTS and 14 control mice were given normal saline. Two additional controls included 10 naïve mice treated with FTS and 7 naïve non-treated mice. The animals were followed clinically and sacrificed after 7 days. Their colons were isolated for histological assessment and for measurement of myeloperoxidase activity (MPO), tumor necrosis factor-α(TNF-α), and interleukin-1β(Il-1β) levels. Ras and activated Ras expression was determined by immunoblotting assays. T cell populations in the colon and spleen were analyzed by flow-cytometry.

Results

FTS induced a 2.1-fold reduction in activated Ras levels (P < 0.004). FTS-treated mice had lower disease activity scores (3.9 ± 1.7 vs. 7.5 ± 2.3, P < 0.001), and lower levels of MPO activity (1.65 ± 0.6 vs. 2.6 ± 0.8 units/g, P < 0.007), Il-1β (2.4 ± 3.6 vs. 24.3 ± 17.5 pg/mg, P < 0.01) and TNF-α (0.63 ± 0.5 vs. 1.9 ± 1 pg/mg, P < 0.04). FTS increased regulatory T cell population in the spleen (1.9 ± 0.4-fold, P < 0.04), and decreased effector T cell populations in the colon and spleen by 24 ± 3% (P < 0.03) and 27 ± 1% (P < 0.02), respectively. FTS had no remarkable side effects.

Conclusions

Ras is involved in the inflammatory processes of induced colitis in mice and its inhibition by FTS ameliorates the severity of the inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Podolsky DK. Inflammatory bowel disease. N Engl J Med. 2002;347:417–429.

    Article  PubMed  CAS  Google Scholar 

  2. Shanahn F. Inflammatory bowel disease: Immunodiagnostics, immunotheraputics, and ecotherapeutics. Gastroenterology. 2001;120:622–635.

    Article  Google Scholar 

  3. Fiocchi C. Inflammatory bowel disease: Etiology and pathogenesis. Gastroenterology. 1998;115:182–205.

    Article  PubMed  CAS  Google Scholar 

  4. Bokoch GM, Der CJ. Emerging concepts in the Ras superfamily of GTP-binding proteins. FASEB J. 1993;7:750–759.

    PubMed  CAS  Google Scholar 

  5. Reuther GW, Der CJ. The Ras branch of small GTPases: Ras family members don’t fall far from the tree. Curr Opin Cell Biol. 2000;12:157–165.

    Article  PubMed  CAS  Google Scholar 

  6. Scheffzek K, Ahmadian MR, Kabsch W, et al. The Ras-RasGAP complex: Structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science. 1997;277:333–338.

    Article  PubMed  CAS  Google Scholar 

  7. Kafri M, Kloog Y, Korczyn AD, et al. Inhibition of Ras attenuates the course of experimental autoimmune neuritis. J Neuroimmunol. 2005;168:46–55.

    Article  PubMed  CAS  Google Scholar 

  8. Clarke HC, Kocher HM, Khwaja A, et al. Ras antagonist farnesylthiosalicylic acid (FTS) reduces glomerular cellular proliferation and macrophage number in rat thy-1 nephritis. J Am Soc Nephrol. 2003;14:848–854.

    Article  PubMed  CAS  Google Scholar 

  9. Katzav A, Kloog Y, Korczyn AD, et al. Treatment of MRL/lpr mice, a genetic autoimmune model, with the Ras inhibitor FTS. Clin Exp Immunol. 2001;126:570–577.

    Article  PubMed  CAS  Google Scholar 

  10. Weijzen S, Velders MP, Kast WM. Modulation of the immune response and tumor growth by activated Ras. Leukemia. 1999;13:502–513.

    Article  PubMed  CAS  Google Scholar 

  11. Haklai R, Weisz MG, Elad G, et al. Dislodgment and accelerated degradation of Ras. Biochemistry. 1998;37:1306–1314.

    Google Scholar 

  12. Marom M, Haklai R, Ben-Baruch G, et al. Selective inhibition of Ras-dependent cell growth by farnesylthiosalisylic acid. J Biol Chem. 1995;270:2263–2270.

    Google Scholar 

  13. Elad-Sfadia G, Haklai R, Ballan E, et al. Galectin-1 augments Ras activation and diverts Ras signals to Raf-1 at the expense of phosphoinositide 3-kinase. J Biol Chem. 2002;277:37169–37175.

    Article  PubMed  CAS  Google Scholar 

  14. Elad-Sfadia G, Haklai R, Balan E, et al. Galectin-3 augments K-Ras activation and triggers a Ras signal that attenuates ERK but not phosphoinositide 3-kinase. J Biol Chem. 2004;279:34822–34930.

    Article  Google Scholar 

  15. Belanis L, Sarah J, Plowman SJ, et al. Galectin-1 is a novel structural component and a major regulator of H-Ras nanoclusters. Mol Biol Cell. 2008;19:1404–1414.

    Article  PubMed  CAS  Google Scholar 

  16. Shalom-Feuerstein R, Levy R, Makovski V, et al. Galectin-3 regulates RasGRP4-mediated activation of N-Ras and H-Ras. Biochim Biophys Acta. 2008;1783:985–993.

    Google Scholar 

  17. Kloog Y, Cox AD. RAS inhibitors: potential for cancer therapeutics. Mol Med Today. 2000;6:398–402.

    Article  PubMed  CAS  Google Scholar 

  18. Le DT, Shannon KM. Ras processing as a therapeutic target in hematologic malignancies. Curr Opin Hematol. 2002;9:308–315.

    Article  PubMed  Google Scholar 

  19. Reif S, Aeed H, Shilo Y, et al. Treatment of thioacetamide-induced liver cirrhosis by the Ras antagonist, farnesylthiosalicylic acid. J Hepatol. 2004;41:235–241.

    Article  PubMed  CAS  Google Scholar 

  20. Reif S, Weis B, Aeed H, et al. The Ras antagonist, farnesylthiosalicylic acid (FTS), inhibits experimentally-induced liver cirrhosis in rats. J Hepatol. 1999;31:1053–1061.

    Article  PubMed  CAS  Google Scholar 

  21. Marciano D, Ben-Bar G, Marom M, et al. Farnesyl derivatives of rigid carboxylic acid-inhibitors of Ras dependent cell growth. J Med Chem. 1995;38:1267–1272.

    Article  PubMed  CAS  Google Scholar 

  22. Paz A, Haklai R, Elad G, et al. Galectin-1 binds H-Ras to mediate Ras membrane anchorage and cell transformation. Oncogene. 2000;20:471–474.

    Google Scholar 

  23. Rachmilewitz D, Karmeli F, Takabayashi K, et al. Immunostimulatory DNA ameliorates experimental and spontaneous murine colitis. Gastroenterology. 2002;122:1428–1441.

    Article  PubMed  CAS  Google Scholar 

  24. Bradley PP, Priebat DA, Christensen RD, et al. Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol. 1982;78:206–209.

    Article  PubMed  CAS  Google Scholar 

  25. Sharon P, Ligumsky M, Rachmilewitz D, et al. Role of prostaglandins in ulcerative colitis. Enhanced production during active disease and inhibition by sulfasalazine. Gastroenterology. 1978;75:638–640.

    PubMed  CAS  Google Scholar 

  26. Karussis D, Abramsky O, Grigoriadis N, et al. The Ras-pathway inhibitor S-trans-trans-farnesylthiosalicylic acid, suppresses experimental allergic encephalomyelitis. J Neuroimmunol. 2000;120:1–9.

    Article  Google Scholar 

  27. Zvibel I, Bar-Zohar D, Kloog Y, et al. The effect of Ras inhibition on the proliferation, apoptosis and matrix metalloproteases activity in rat hepatic stellate cells. Dig Dis Sci. 2008;53:1048–1053.

    Article  PubMed  CAS  Google Scholar 

  28. Olivera JB, Biedere N, Niemela JE, et al. NRAS mutation causes a human autoimmune lymphoproliferative syndrome. Proc Natl Acad Sci USA. 2007;104:8953–8958.

    Article  Google Scholar 

  29. Fields PE, Gajewski TF. Biochemical analysis of activated T lymphocytes. Protein phosphorylation and Ras, ERK, and JNK activation. Methods Mol Biol. 2000;134:307–317.

    PubMed  CAS  Google Scholar 

  30. Genot E, Cantrell DA. Ras regulation and function in lymphocytes. Curr Opin Immunol. 2000;12:289–294.

    Article  PubMed  CAS  Google Scholar 

  31. Mor A, Keren G, Kloog Y, et al. N-Ras or K-Ras inhibition increases the number and enhances the function of Foxp3 regulatory T cells. Eur J Immunol. 2008;38:1493–1502.

    Article  PubMed  CAS  Google Scholar 

  32. Marks RE, Ho AW, Robbel C, et al. Farnesyltransferase inhibitors inhibit T-cell cytokine production at the posttranscriptional level. Blood. 2007;110:1982–1988.

    Article  PubMed  CAS  Google Scholar 

  33. Mor A, Kloog Y, Keren G, et al. Ras inhibition increases the frequency and function of regulatory T cells and attenuates type-1 diabetes in non-obese diabetic mice. Eur J Pharmacol. 2009;616:301–305.

    Article  PubMed  CAS  Google Scholar 

  34. Rachmilewitz D, Katakura K, Karmeli F, et al. Toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis. Gastroenterology. 2004;126:520–528.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shimon Reif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oron, T., Elad-Sfadia, G., Haklai, R. et al. Prevention of Induced Colitis in Mice by the Ras Antagonist Farnesylthiosalicylic Acid. Dig Dis Sci 57, 320–326 (2012). https://doi.org/10.1007/s10620-011-1880-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-011-1880-y

Keywords

Navigation