Skip to main content

Advertisement

Log in

Effects of Macrophage Metalloelastase on the Basic Fibroblast Growth Factor Expression and Tumor Angiogenesis in Murine Colon Cancer

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background and Aim

Previous studies have shown that overexpression of macrophage metalloelastase (MME) suppresses tumor growth in mice. The purpose of this study was to investigate the effects of MME on basic fibroblast growth factor (bFGF) expression and tumor angiogenesis in murine colon cancer.

Methods

Murine CT-26 colon cancer cells stably transfected with MME were inoculated subcutaneously. Reverse-transcriptase polymerase chain reaction (RT-PCR), immunoblotting, and immunohistochemistry were used to explore the bFGF mRNA and protein expression. Immunohistochemical staining of CD34 was used to measure the microvessel density (MVD).

Results

bFGF mRNA levels in tumor tissues of CT-26-EGFP and nontransfected cells were respectively 2.7-fold (0.56 ± 0.063 vs. 0.21 ± 0.042) and 2.5-fold (0.53 ± 0.066 vs. 0.21 ± 0.042) higher than that in tumors of CT-26-EGFP-MME cells (p < 0.01). bFGF protein levels exhibited a similar trend. Tumors of CT-26-EGFP-MME cells demonstrated a lower microvessel density (9.35 ± 2.79) than control tumors of CT-26-EGFP cells (22.85 ± 3.80) and nontransfected cells (23.45 ± 4.49) (p < 0.001).

Conclusions

We found that expression of MME inversely correlates with the expression of bFGF and tumor angiogenesis in a model of murine colon cancer. These data indicate that manipulation of MME expression could be a novel modality approach to colon cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. DeClerck YA, Mercurio AM, Stack MS, et al. Proteases, extracellular matrix, and cancer: a workshop of the path B study section. Am J Pathol. 2004;164:1131–1139.

    Article  PubMed  CAS  Google Scholar 

  2. Burg-Roderfeld M, Roderfeld M, Wagner S, et al. MMP-9-hemopexin domain hampers adhesion and migration of colorectal cancer cells. Int J Oncol. 2007;30:985–992.

    PubMed  CAS  Google Scholar 

  3. Werb Z, Gordon S. Elastase secretion by stimulated macrophages. Characterization and regulation. J Exp Med. 1975;142:361–377.

    Article  PubMed  CAS  Google Scholar 

  4. Fu JY, Lyga A, Shi H, Blue ML, Dixon B, Chen D. Cloning, expression, purification, and characterization of rat MME. Protein Expr Purif. 2001;21:268–274.

    Article  PubMed  CAS  Google Scholar 

  5. Zhang H, Li Y, Xu G. Human macrophage metalloelastase expression in gastric cancer and its relationship with gastric cancer prognosis. J Exp Clin Cancer Res. 2007;26:361–366.

    PubMed  CAS  Google Scholar 

  6. Toshimichi A, Mitsuhiro T, Shaoqiang CH, et al. Prognostic values of matrix metalloproteinase family expression in human colorectal carcinoma. J Surg Res. 2008;146:32–42.

    Article  Google Scholar 

  7. Dong Z, Kumar R, Yang X, Fidler IJ. Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell. 1997;88:801–810.

    Article  PubMed  CAS  Google Scholar 

  8. Cornelius LA, Nehring LC, Harding E, et al. Matrix metalloproteinases generate angiostatin: effects on neovascularization. J Immunol. 1998;161:6845–6852.

    PubMed  CAS  Google Scholar 

  9. Dong Z, Yoneda J, Kumar R, Fidler IJ, et al. Angiostatin-mediated suppression of cancer metastases by primary neoplasms engineered to produce granulocyte/macrophage colony-stimulating factor. J Exp Med. 1998;188:755–763.

    Article  PubMed  CAS  Google Scholar 

  10. Xu ZW, Shi H, Li Q, et al. Mouse macrophage metalloelastase generates angiostatin from plasminogen and suppresses tumor angiogenesis in murine colon cancer. Oncol Rep. 2008;20:81–88.

    PubMed  CAS  Google Scholar 

  11. O’Reilly MS, Holmgren L, Shing Y, et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell. 1994;79:315–328.

    Article  PubMed  Google Scholar 

  12. Vlodavsky I, Fuks Z, Ishai-Michaeli R, et al. Extracellular matrix-resident basic fibroblast growth factor: implication for the control of angiogenesis. J Cell Biochem. 1991;45:167–176.

    Article  PubMed  CAS  Google Scholar 

  13. Mader JS, Smyth D, Marshall J, Hoskin DW. Bovine lactoferricin inhibits basic fibroblast growth factor-and vascular endothelial growth factor165-induced angiogenesis by competing for heparin-like binding sites on endothelial cells. Am J Pathol. 2006;169:1753–1766.

    Article  PubMed  CAS  Google Scholar 

  14. Ribatti D. The crucial role of vascular permeability factor/vascular endothelial growth factor in angiogenesis: a historical review. Br J Haematol. 2005;128:303–309.

    Article  PubMed  CAS  Google Scholar 

  15. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408.

    Article  PubMed  CAS  Google Scholar 

  16. Dong Y, Wang J, Sheng Z, et al. Downregulation of EphA1 in colorectal carcinomas correlates with invasion and metastasis. Mod Pathol. 2009;22:151–160.

    Article  PubMed  CAS  Google Scholar 

  17. Shi H, Xu JM, Hu NZ, Xie HJ. Prognostic significance of expression of cyclooxygenase-2 and vascular endothelial growth factor in human gastric carcinoma. World J Gastroenterol. 2003;9:1421–1426.

    PubMed  CAS  Google Scholar 

  18. Kirsch M, Schackert G, Black PM. Metastasis and angiogenesis. Cancer Treat Res. 2004;117:285–304.

    Article  PubMed  CAS  Google Scholar 

  19. Fidler IJ, Ellis LM. The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell. 1994;79:185–188.

    Article  PubMed  CAS  Google Scholar 

  20. Yonemura Y, Endo Y, Fujita H, et al. Inhibition of peritoneal dissemination in human gastric cancer by MMP-7-specific antisense oligonucleotide. J Exp Clin Cancer Res. 2001;20:205–212.

    PubMed  CAS  Google Scholar 

  21. Gorrin-Rivas MJ, Arii S, Furutani M, et al. Expression of human macrophage metalloelastase gene in hepatocellular carcinoma: correlation with angiostatin generation and its clinical significance. Hepatology. 1998;28:986–993.

    Article  PubMed  CAS  Google Scholar 

  22. Peng Ch, Fo HJ, Li MZ, et al. Human macrophage metalloelastase correlates with angiogenesis and prognosis of gastric carcinoma. Dig Dis Sci. 2010;55:3138–3146.

    Article  Google Scholar 

  23. Gorrin-Rivas MJ, Arii S, Mori A, et al. Implications of human macrophage metalloelastase and vascular endothelial growth factor gene expression in angiogenesis of hepatocellular carcinoma. Ann Surg. 2000;23:67–73.

    Article  Google Scholar 

  24. Yang W, Arii S, Gorrin-Rivas MJ, Mori A. Human macrophage metalloelastase gene expression in colorectal carcinoma and its clinicopathologic significance. Cancer. 2001;91:1277–1283.

    Article  PubMed  CAS  Google Scholar 

  25. Kassam G, Kwon M, Yoon CS, et al. Purification and characterization of A61. An angiostatin-like plasminogen fragment produced by plasmin autodigestion in the absence of sulfhydryl donors. J Biol Chem. 2001;276:8924–8933.

    Article  PubMed  CAS  Google Scholar 

  26. Kwon M, Yoon CS, Fitzpatrick S, et al. p22 is a novel plasminogen fragment with antiangiogenic activity. Biochemistry. 2001;40:13246–13253.

    Article  PubMed  CAS  Google Scholar 

  27. Gorrin-Rivas MJ, Arii S, Furutan M, et al. Mouse macrophage metalloelastase gene transfer into a murine melanoma suppresses primary tumor growth by halting angiogenesis. Clin Cancer Res. 2000;6:1647–1654.

    PubMed  CAS  Google Scholar 

  28. Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science. 1994;264:569–571.

    Article  PubMed  CAS  Google Scholar 

  29. Sepp NT, Li LJ, Lee KH, et al. Basic fibroblast growth factor increases expression of avb3 integrin complex on human microvascular endothelial cells. J Invest Dermatol. 1994;103:295–299.

    Article  PubMed  CAS  Google Scholar 

  30. Balbín M, Pendás AM, Uría JA, Jiménez MG, Freije JP, López-Otín C. Expression and regulation of collagenase-3 (MMP-13) in human malignant tumors. APMIS. 1999;107:45–53.

    Article  PubMed  Google Scholar 

  31. Houghton AM, Grisolano JL, Baumann ML, et al. Macrophage elastase (matrix metalloproteinase-12) suppresses growth of lung metastases. Cancer Res. 2006;66:6149–6155.

    Article  PubMed  CAS  Google Scholar 

  32. Tozer GM. Measuring tumour vascular response to antivascular and antiangiogenic drugs. Br J Radiol. 2003;76:23–35.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science and Technology Foundation of Anhui Province (01043904) and the Natural Science Foundation of Education Department of Anhui Province (2003 KG199). We sincerely thank The Key Laboratory of Gene Resource Utilization for Genetic Ministry of Education and Anhui Province and especially M. Haiping Wang, Qi Li, and Lijie Feng.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianming Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Z., Shi, H., Mei, Q. et al. Effects of Macrophage Metalloelastase on the Basic Fibroblast Growth Factor Expression and Tumor Angiogenesis in Murine Colon Cancer. Dig Dis Sci 57, 85–91 (2012). https://doi.org/10.1007/s10620-011-1838-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-011-1838-0

Keywords

Navigation