Skip to main content

Advertisement

Log in

Application of Near-Infrared Fluorescence Imaging Using a Polymeric Nanoparticle-Based Probe for the Diagnosis and Therapeutic Monitoring of Colon Cancer

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Early and accurate detection of adenomatous colonic polyps is a major concern in the prevention of colon cancer. Near-infrared fluorescence (NIRF) imaging with optical probes targeting specific peptides enables the noninvasive visualization and characterization of lesions. Matrix metalloproteinases (MMPs) are known to play an important role in tumorigenesis and tumor progression.

Aim

To investigate the effectiveness of NIRF imaging, with a novel MMP-activatable probe based on a polymeric nanoparticle platform, in the colon cancer models.

Methods

We used an azoxymethane (AOM)-induced mouse colon cancer model resembling human sporadic colon cancer and an MMP-positive xenograft tumor model. MMP expression was evaluated by Western blotting, real-time PCR, and immunohistochemical staining. NIRF imaging was performed with a novel MMP-activatable probe, an MMP-inactivatable probe, and saline. In addition, we observed the change of NIRF signal intensity after intratumoral administration of an MMP-inhibitor.

Results

Multiple tumors with various sizes developed in AOM-treated mouse colons, progressing from adenomas to adenocarcinomas, with MMP expression progressively increasing in the normal-adenoma-adenocarcinoma sequence. In mice injected with the MMP-activatable probe, the NIRF signal also increased in this sequence and was highly correlated with MMP expression (p < 0.001). Tumor-background-ratios (TBR) of adenocarcinoma to adjacent normal mucosa by a novel probe were significantly higher than that of adenoma (p < 0.001). In both the AOM and xenograft models, NIRF signals of tumors decreased after treatment with an MMP-inhibitor.

Conclusions

NIRF imaging using a polymeric nanoparticle-based probe may be useful for detecting early stage disease and for assessing treatment response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59:225–249.

    Article  PubMed  Google Scholar 

  2. Center MM, Jemal A, Smith RA, Ward E. Worldwide variations in colorectal cancer. CA Cancer J Clin. 2009;59:366–378.

    Article  PubMed  Google Scholar 

  3. Vogelstein B, Fearon ER, Hamilton SR, et al. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988;319:525–532.

    Article  PubMed  CAS  Google Scholar 

  4. Winawer SJ, Zauber AG, Ho MN, et al. Prevention of colorectal cancer by colonoscopic polypectomy. The National Polyp Study Workgroup. N Engl J Med. 1993;329:1977–1981.

    Article  PubMed  CAS  Google Scholar 

  5. Rex DK, Cutler CS, Lemmel GT, et al. Colonoscopic miss rates of adenomas determined by back-to-back colonoscopies. Gastroenterology. 1997;112:24–28.

    Article  PubMed  CAS  Google Scholar 

  6. Rembacken BJ, Fujii T, Cairns A, et al. Flat and depressed colonic neoplasms: a prospective study of 1000 colonoscopies in the UK. Lancet. 2000;355:1211–1214.

    Article  PubMed  CAS  Google Scholar 

  7. Fennerty MB. Tissue staining (chromoscopy) of the gastrointestinal tract. Can J Gastroenterol. 1999;13:423–429.

    PubMed  CAS  Google Scholar 

  8. Machida H, Sano Y, Hamamoto Y, et al. Narrow-band imaging in the diagnosis of colorectal mucosal lesions: a pilot study. Endoscopy. 2004;36:1094–1098.

    Article  PubMed  CAS  Google Scholar 

  9. Weissleder R, Ntziachristos V. Shedding light onto live molecular targets. Nat Med. 2003;9:123–128.

    Article  PubMed  CAS  Google Scholar 

  10. Weissleder R. Molecular imaging in cancer. Science. 2006;312:1168–1171.

    Article  PubMed  CAS  Google Scholar 

  11. Mahmood U, Wallace MB. Molecular imaging in gastrointestinal disease. Gastroenterology. 2007;132:11–14.

    Article  PubMed  Google Scholar 

  12. Weissleder R, Mahmood U. Molecular imaging. Radiology. 2001;219:316–333.

    PubMed  CAS  Google Scholar 

  13. Hilderbrand SA, Weissleder R. Near-infrared fluorescence: application to in vivo molecular imaging. Curr Opin Chem Biol. 2010;14:71–79.

    Article  PubMed  CAS  Google Scholar 

  14. Lee S, Park K, Kim K, Choi K, Kwon IC. Activatable imaging probes with amplified fluorescent signals. Chem Commun (Camb). 2008:4250–4260.

  15. Yang Z, Leon J, Martin M, et al. Pharmacokinetics and biodistribution of near-infrared fluorescence polymeric nanoparticles. Nanotechnology. 2009;20:165101.

    Article  PubMed  Google Scholar 

  16. Lee S, Ryu JH, Park K, et al. Polymeric nanoparticle-based activatable near-infrared nanosensor for protease determination in vivo. Nano Lett. 2009;9:4412–4416.

    Article  PubMed  CAS  Google Scholar 

  17. Coussens LM, Fingleton B, Matrisian LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science. 2002;295:2387–2392.

    Article  PubMed  CAS  Google Scholar 

  18. Mysliwiec AG, Ornstein DL. Matrix metalloproteinases in colorectal cancer. Clin Colorectal Cancer. 2002;1:208–219.

    Article  PubMed  CAS  Google Scholar 

  19. Kirimlioglu H, Kirimlioglu V, Yilmaz S, et al. Role of matrix metalloproteinase-7 in colorectal adenomas. Dig Dis Sci. 2006;51:2068–2072.

    Article  PubMed  CAS  Google Scholar 

  20. Zucker S, Vacirca J. Role of matrix metalloproteinases (MMPs) in colorectal cancer. Cancer Metastasis Rev. 2004;23:101–117.

    Article  PubMed  CAS  Google Scholar 

  21. Scherer RL, McIntyre JO, Matrisian LM. Imaging matrix metalloproteinases in cancer. Cancer Metastasis Rev. 2008;27:679–690.

    Article  PubMed  Google Scholar 

  22. Nambiar PR, Girnun G, Lillo NA, Guda K, Whiteley HE, Rosenberg DW. Preliminary analysis of azoxymethane induced colon tumors in inbred mice commonly used as transgenic/knockout progenitors. Int J Oncol. 2003;22:145–150.

    PubMed  CAS  Google Scholar 

  23. Boivin GP, Washington K, Yang K, et al. Pathology of mouse models of intestinal cancer: consensus report and recommendations. Gastroenterology. 2003;124:762–777.

    Article  PubMed  Google Scholar 

  24. Turk BE, Huang LL, Piro ET, Cantley LC. Determination of protease cleavage site motifs using mixture-based oriented peptide libraries. Nat Biotechnol. 2001;19:661–667.

    Article  PubMed  CAS  Google Scholar 

  25. Marten K, Bremer C, Khazaie K, et al. Detection of dysplastic intestinal adenomas using enzyme-sensing molecular beacons in mice. Gastroenterology. 2002;122:406–414.

    Article  PubMed  Google Scholar 

  26. Brown SL, Riehl TE, Walker MR, et al. Myd88-dependent positioning of Ptgs2-expressing stromal cells maintains colonic epithelial proliferation during injury. J Clin Invest. 2007;117:258–269.

    Article  PubMed  CAS  Google Scholar 

  27. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–408.

    Article  PubMed  CAS  Google Scholar 

  28. Tung CH, Bredow S, Mahmood U, Weissleder R. Preparation of a cathepsin D sensitive near-infrared fluorescence probe for imaging. Bioconjug Chem. 1999;10:892–896.

    Article  PubMed  CAS  Google Scholar 

  29. Weissleder R, Tung CH, Mahmood U, Bogdanov A Jr. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol. 1999;17:375–378.

    Article  PubMed  CAS  Google Scholar 

  30. Portney NG, Ozkan M. Nano-oncology: drug delivery, imaging, and sensing. Anal Bioanal Chem. 2006;384:620–630.

    Article  PubMed  CAS  Google Scholar 

  31. Sajja HK, East MP, Mao H, Wang YA, Nie S, Yang L. Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect. Curr Drug Discov Technol. 2009;6:43–51.

    Article  PubMed  CAS  Google Scholar 

  32. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65:271–284.

    Article  PubMed  CAS  Google Scholar 

  33. Zucker S. A critical appraisal of the role of proteolytic enzymes in cancer invasion: emphasis on tumor surface proteinases. Cancer Invest. 1988;6:219–231.

    Article  PubMed  CAS  Google Scholar 

  34. Koblinski JE, Ahram M, Sloane BF. Unraveling the role of proteases in cancer. Clin Chim Acta. 2000;291:113–135.

    Article  PubMed  CAS  Google Scholar 

  35. Newell KJ, Witty JP, Rodgers WH, Matrisian LM. Expression and localization of matrix-degrading metalloproteinases during colorectal tumorigenesis. Mol Carcinog. 1994;10:199–206.

    Article  PubMed  CAS  Google Scholar 

  36. Bremer C, Tung CH, Weissleder R. In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat Med. 2001;7:743–748.

    Article  PubMed  CAS  Google Scholar 

  37. Nahrendorf M, Swirski FK, Aikawa E, et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med. 2007;204:3037–3047.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Korea Health 21 R&D project, the Ministry for Health, Welfare, and Family, Republic of Korea (A062254), the Asan Institute for Life Sciences (2008-261), and the Korean Association for the Study of Intestinal Diseases.

Conflict of interest

The authors have no financial interest or affiliation with any commercial supporter or providers of any commercial services. The authors alone are responsible for the content and writing of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Jae Myung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, S.M., Myung, SJ., Kim, IW. et al. Application of Near-Infrared Fluorescence Imaging Using a Polymeric Nanoparticle-Based Probe for the Diagnosis and Therapeutic Monitoring of Colon Cancer. Dig Dis Sci 56, 3005–3013 (2011). https://doi.org/10.1007/s10620-011-1685-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-011-1685-z

Keywords

Navigation