Pharmacological Basis for the Medicinal Use of Psyllium Husk (Ispaghula) in Constipation and Diarrhea

Abstract

Background

The objective of this study was to determine the pharmacological basis of the medicinal use of psyllium husk (Ispaghula) in gastrointestinal motility disorders.

Methods

In-vivo studies were conducted on mice, and isolated rabbit jejunum and guinea-pig ileum were used in in-vitro experiments.

Results

The crude extract of Ispaghula (Po.Cr) had a laxative effect in mice at 100 and 300 mg/kg, which was partially sensitive to atropine or SB203186 (5-HT4 antagonist). At higher doses (500 and 1,000 mg/kg), Po.Cr had antisecretory and antidiarrheal activity. In guinea-pig ileum, Po.Cr (1–10 mg/ml) had a stimulatory effect, which was partially sensitive to atropine or SB203186. In rabbit jejunum, Po.Cr had a partially atropine-sensitive stimulatory effect followed by relaxation at 10 mg/ml. The relaxation was inhibited by the presence of l-NAME, a nitric oxide (NO) synthase inhibitor, or methylene blue, a guanylyl cyclase inhibitor. Similarly, the relaxant effect of Po.Cr on K+ (80 mM)-induced contractions, was attenuated in the presence of l-NAME or methylene blue. Activity-directed fractionation of Po.Cr revealed that the gut stimulatory and inhibitory constituents were widely distributed in the aqueous and organic fractions.

Conclusion

This study demonstrates that Ispaghula has a gut-stimulatory effect, mediated partially by muscarinic and 5-HT4 receptor activation, which may complement the laxative effect of its fiber content, and a gut-inhibitory activity possibly mediated by blockade of Ca2+ channels and activation of NO-cyclic guanosine monophosphate pathways. This may explain its medicinal use in diarrhea. It is, perhaps, also intended by nature to offset an excessive stimulant effect.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Ouyang H, Chen JD. Review article: therapeutic roles of acupuncture in functional gastrointestinal disorders. Aliment Pharmacol Ther. 2004;20:831–841.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Cheng CW, Bian ZX, Wu TX. Systematic review of Chinese herbal medicine for functional constipation. World J Gastroenterol. 2009;15:4886–4895.

    PubMed  Article  Google Scholar 

  3. 3.

    Ramkumar D, Rao SS. Efficacy and safety of traditional medical therapies for chronic constipation: systematic review. Am J Gastroenterol. 2005;100:936–971.

    PubMed  Article  Google Scholar 

  4. 4.

    Tack J, Müller-Lissner S. Treatment of chronic constipation: current pharmacologic approaches and future directions. Clin Gastroenterol Hepatol. 2009;7:502–508.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Nemes Z. Diarrhea from the infectologist’s point of view. Orv Hetil. 2009;150:353–361.

    PubMed  Article  Google Scholar 

  6. 6.

    Kosek M, Bern C, Guerrant RL. The global burden of diarrhoeal disease, as estimated from studies published between 1992 and 2000. Bull World Health Organ. 2003;81:197–204.

    PubMed  Google Scholar 

  7. 7.

    Liebelt EL. Clinical and laboratory evaluation and management of children with vomiting and dehydration. Curr Opin Pediatr. 1998;10:461–469.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    WHO. Diarrhea: Why Children Are Still Dying and What Can Be Done?. Geneva: World Health Organization; 2009.

    Google Scholar 

  9. 9.

    Gilani AH, Rahman A. Trends in ethnopharmacology. J Ethnopharmacol. 2005;100:43–49.

    PubMed  Article  Google Scholar 

  10. 10.

    Gilani AH. Constipation and its treatment with natural drugs used in Pakistan. In: Capasso F, Mascolo N, eds. Natural Drugs and the Digestive Tract. Rome: EMSI; 1992:117–121.

    Google Scholar 

  11. 11.

    Pasricha PJ. Treatment of disorders of bowel motility and water flux. In: Brunton LL, Lazo JS, Parker KL, eds. The Pharmacological Basis of Therapeutics. 11th ed. New York: McGraw–Hill; 2006:983–1008.

    Google Scholar 

  12. 12.

    Duke JA, Bogenschutz-Godwin MJ, Du Celliar J, Duke PAK. Plantago ovata F. In: Hand Book of Medicinal Herbs. 2nd ed. Boca Raton: CRC Press; 2002:591–592.

  13. 13.

    Duke JA. Plantago ovata F. In: Handbook of Phytochemical Constituents of GRAS Herbs and Other Economic Plants. 2nd ed. Boca Raton: CRC Press; 1992:472–473.

  14. 14.

    Deters AM, Schroder KR, Smiatek T, Hensel A. Ispaghula (Plantago ovata) seed husk polysaccharides promote proliferation of human epithelial cells (skin keratinocytes and fibroblasts) via enhanced growth factor receptors and energy production. Planta Med. 2005;71:33–39.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Van Craeyveld V, Delcour JA, Courtin CM. Ball milling improves extractability and affects molecular properties of psyllium (Plantago ovata Forsk.) seed husk arabinoxylan. J Agric Food Chem. 2008;56:11306–11311.

    PubMed  Article  Google Scholar 

  16. 16.

    Elli M, Cattivelli D, Soldi S, Bonatti M, Morelli L. Evaluation of prebiotic potential of refined psyllium (Plantago ovata) fiber in healthy women. J Clin Gastroenterol. 2008;42:S174–S176.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Zaman V, Manzoor SM, Zaki M, Aziz N, Gilani AH. The presence of antiamoebic constituent(s) in psyllium husk. Phytother Res. 2002;16:78–79.

    PubMed  Article  Google Scholar 

  18. 18.

    Pirotta M. Irritable bowel syndrome—the role of complementary medicines in treatment. Aust Fam Physician. 2009;38:966–968.

    PubMed  Google Scholar 

  19. 19.

    Rodriguez-Cabezas ME, Galvez J, Camuesco D, et al. Intestinal anti-inflammatory activity of dietary fiber (Plantago ovata seeds) in HLA-B27 transgenic rats. Clin Nutr. 2003;22:463–471.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Odes HS, Madar Z. A double-blind trial of a celandin, aloevera and psyllium laxative preparation in adult patients with constipation. Digestion. 1991;49:65–71.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Cheskin LJ, Kamal N, Crowell MD, Schuster MM, Whitehead WE. Mechanisms of constipation in older persons and effects of fiber compared with placebo. J Am Geriatr Soc. 1995;43:666–669.

    PubMed  CAS  Google Scholar 

  22. 22.

    McRorie JW, Daggy BP, Morel JG, Diersing PS, Miner PB, Robinson M. Psyllium is superior to docusate sodium for treatment of chronic constipation. Aliment Pharmacol Ther. 1998;12:491–497.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Johanson JF. Review of the treatment options for chronic constipation. Med Gen Med. 2007;9:25.

    Google Scholar 

  24. 24.

    Bolla G, Sartore G. The psyllium fibre for the treatment of functional constipation in children. Pediatr Med Chir. 2008;30:146–148.

    PubMed  CAS  Google Scholar 

  25. 25.

    Gilani AH, Nauman A, Khan A, Khan S, Zaman V. Laxative effect of Ispaghula: physical or chemical effects? Phytother Res. 1998;12:63–65.

    Article  Google Scholar 

  26. 26.

    Smalley JR, Klish WJ, Campbell MA, Brown MR. Use of psyllium in the management of chronic nonspecific diarrhea of childhood. J Pediatr Gastroenterol Nutr. 1982;1:361–363.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Qvitzau S, Matzen P, Madsen P. Treatment of chronic diarrhea: loperamide versus ispaghula husk and calcium. Scand J Gastroenterol. 1988;23:1237–1240.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Washington N, Harris M, Mussellwhite A, Spiller RC. Moderation of lactulose-induced diarrhea by psyllium: effects on motility and fermentation. Am J Clin Nutr. 1998;67:317–321.

    PubMed  CAS  Google Scholar 

  29. 29.

    Murphy J, Stacey D, Crook J, Thompson B, Panetta D. Testing control of radiation-induced diarrhea with a psyllium bulking agent: a pilot study. Can Oncol Nurs J. 2000;10:96–100.

    PubMed  CAS  Google Scholar 

  30. 30.

    Fouda AM, Berika MY. Evaluation of the effect of hydroalcoholic extract of Zingiber officinale rhizomes in rat collagen-induced arthritis. Basic Clin Pharmacol Toxicol. 2009;104:262–271.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Williamson EM, Okpako DT, Evans FJ. Pharmacological Methods in Phytotherapy Research. Chichester: Wiley; 1998:15–23.

    Google Scholar 

  32. 32.

    Evans WC. Phytochemistry. In: Trease and Evans Pharmacognosy. 5th ed. Delhi, India: Elsevier; 2006:135–150.

  33. 33.

    National Research Council. Guide for the Care and Use of Laboratory Animals. Washington, DC: National Academy Press; 1996:1–7.

    Google Scholar 

  34. 34.

    Kadowaki M, Nagakura Y, Tomoi M, Mori J, Kohsaka M. Effect of FK1052, a potent 5-hydroxytryptamine-3 and 5-hydroxytryptamine-4 receptor dual antagonist, on colonic function in vivo. J Pharmacol Exp Ther. 1993;266:274–280.

    Google Scholar 

  35. 35.

    Gilani AH, Ghayur MN, Khalid A, Zaheer-ul-Haq MA, Choudhary MI, Rahman A. Presence of antispasmodic, antidiarrheal, antisecretory, calcium antagonist and acetylcholinesterase inhibitory steroidal alkaloids in Sarcococca saligna. Planta Med. 2005;71:120–125.

    Article  CAS  Google Scholar 

  36. 36.

    Borrelli F, Capasso F, Capasso R, et al. Effect of Boswellia serrata on intestinal motility in rodents: inhibition of diarrhea without constipation. Br J Pharmacol. 2006;148:553–560.

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Godfraind T, Miller R, Wibo M. Calcium antagonism and calcium entry blockade. Pharmacol Rev. 1986;38:312–326.

    Google Scholar 

  38. 38.

    Gilani AH, Khan A, Ghayur MN, Herzig JW. Antispasmodic effects of Rooibos tea (Aspalathus linearis) are mediated predominantly through potassium channel activation. Basic Clin Pharmacol Toxicol. 2006;99:365–373.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Gilani AH, Khan AU, Raoof M, et al. Gastrointestinal, selective airways and urinary bladder relaxant effects of Hyoscyamus niger are mediated through dual blockade of muscarinic receptors and Ca++ channels. Fund Clin Pharmacol. 2008;22:87–99.

    Article  CAS  Google Scholar 

  40. 40.

    Adeyemi OO, Okpo SO, Young-Nwafor CC. The relaxant activity of the methanolic extract of Acanthus montanus on intestinal smooth muscles. J Ethnopharmacol. 1999;68:169–173.

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Ghayur MN, Gilani AH. Pharmacological basis for the medicinal use of ginger in gastrointestinal disorders. Dig Dis Sci. 2005;50:1889–1897.

    PubMed  Article  Google Scholar 

  42. 42.

    Brown JH, Taylor P. Muscarinic receptor agonists and antagonists. In: Brunton LL, Lazo JS, Parker KL, eds. The Pharmacological Basis of Therapeutics. 11th ed. ed. New York: McGraw–Hill; 2006:183–200.

    Google Scholar 

  43. 43.

    Sander-Bush E, Mayer SE. 5-Hydroxytryptamine (serotonin): agonist and antagonists. In: Brunton LL, Lazo JS, Parker KL, eds. The Pharmacological Basis of Therapeutics. 11th ed. New York: McGraw–Hill; 2006:297–315.

    Google Scholar 

  44. 44.

    Gilani AH, Shaheen F, Christopoulos A, Mitchelson F. Interaction of ebeinone, an alkaloid from Fritillaria imperialis, at two muscarinic acetylcholine receptor subtypes. Life Sci. 1997;60:535–544.

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Gilani AH, Ghayur MN, Khan A. Ca++ antagonist and cholinergic activities explain the medicinal use of olive in gut disorders. Nutr Res. 2006;26:277–283.

    Article  CAS  Google Scholar 

  46. 46.

    Ghayur MN, Gilani AH, Houghton PJ. Species differences in the gut-stimulatory effects of radish seeds. J Pharm Pharmacol. 2005;57:1493–1501.

    PubMed  CAS  Google Scholar 

  47. 47.

    McLean PG, Coupar IM. 5-HT4 receptor antagonist affinities of SB207710, SB205008, and SB203186 in the human colon, rat oesophagus, and guinea-pig ileum peristaltic reflex. Naunyn Schmiedebergs Arch Pharmacol. 1995;352:132–140.

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Grider JR, Foxx-Orenstein AE, Jin JG. 5-HT4 receptor agonists initiate the peristaltic reflex in human, rat, and guinea-pig intestine. Gastroenterology. 1998;115:370–380.

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Baker DE. Tegaserod for the treatment of constipation-predominant irritable bowel syndrome. Rev Gastroenterol Disord. 2001;1:187–198.

    PubMed  CAS  Google Scholar 

  50. 50.

    Gale JD. The use of novel promotility and prosecretory agents for the treatment of chronic idiopathic constipation and irritable bowel syndrome with constipation. Adv Ther. 2009;5:519–530.

    Article  Google Scholar 

  51. 51.

    Al-Judaibi B, Chande N, Gregor J. Safety and efficacy of tegaserod therapy in patients with irritable bowel syndrome or chronic constipation. Can J Clin Pharmacol. 2010;17:194–200.

    Google Scholar 

  52. 52.

    Reynolds IJ, Gould RJ, Snyder SH. Loperamide: blockade of calcium channels as a mechanism for antidiarrhea l effects. J Pharmacol Exp Ther. 1984;231:628–632.

    PubMed  CAS  Google Scholar 

  53. 53.

    Lee CW, Sarna SK, Singaram C, Casper MA. Ca++ channel blockade by verapamil inhibits GMCs and diarrhea during small intestinal inflammation. Am J Physiol. 1997;273:785–794.

    Google Scholar 

  54. 54.

    Billman GE. The antiarrythmic effects of the calcium antagonists. In: Epstein M, ed. Calcium Antagonists in Clinical Medicine. Philadelphia: Hanley and Belfus; 1992:183–212.

    Google Scholar 

  55. 55.

    Iwao I, Terada Y. On the mechanism of diarrhea due to castor oil. Jpn J Pharmacol. 1962;12:137–145.

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Kumar A, Kumar N, Vij JC, Sarin SK, Anand BS. Optimum dosage of ispaghula husk in patients with irritable bowel syndrome: correlation of symptom relief with whole gut transit time and stool weight. Gut. 1987;28:150–155.

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Ganong WF. Review of Medical Physiology. California: Appleton and Lange; 1991:263.

    Google Scholar 

  58. 58.

    Sharif NA, Xu SX, Yanni JM. Histamine receptor-subtype affinities, selectivities, and potencies of emedastine, a novel H1-selective antagonist, and other ocularly employed antihistamines. Drug Dev Res. 1994;33:448–453.

    Article  CAS  Google Scholar 

  59. 59.

    Wien R, Mason DF, Edge ND, Langston GT. The ganglion blocking properties of homologous compounds in the methonium series. Br J Pharmacol. 1952;7:534–541.

    CAS  Google Scholar 

  60. 60.

    Buchheit KH, Engel G, Mutschler E, Richardson B. Study of the contractile effect of 5-hydroxytryptamine (5-HT) in the isolated longitudinal muscle strip from guinea-pig ileum. Naunyn Schmiedebergs Arch Pharmacol. 1985;329:36–41.

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Meulemans AL, Schuurkes JA. Is the action of cisapride on the guinea-pig ileum mediated via 5-HT4 receptors? Eur J Pharmacol. 1992;212:51–59.

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Mascolo N, Izzo AA, Barbato F, Capasso F. Inhibitors of nitric oxide synthetase prevent castor-oil-induced diarrhea in the rat. Br J Clin Pharmacol. 1993;108:861–864.

    CAS  Google Scholar 

  63. 63.

    Patil CS, Singh VP, Jain NK, Kulkarni SK. Inhibitory effect of sildenafil on gastrointestinal smooth muscle: role of NO-cGMP transduction pathway. Indian J Exp Biol. 2005;43:167–171.

    PubMed  CAS  Google Scholar 

  64. 64.

    Garthwaite J, Southam E, Boulton CL, Nielsen EB, Schmidt K, Mayer B. Potent and selective inhibition of nitric oxide-sensitive guanylyl cyclase by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. Mol Pharmacol. 1995;48:184–188.

    PubMed  CAS  Google Scholar 

  65. 65.

    Brading AF. How do drugs initiate contractions in smooth muscles? Trends Pharmacol Sci. 1981;2:261–265.

    Article  CAS  Google Scholar 

  66. 66.

    Fleckenstein A. Specific pharmacology of Ca++ in myocardium cardiac pacemakers and vascular smooth muscle. Annu Rev Pharmacol Toxicol. 1993;17:149–166.

    Article  Google Scholar 

  67. 67.

    Ghayur MN, Gilani AH. Species differences in the prokinetic effects of ginger. Int J Food Sci Nutr. 2006;57:65–73.

    PubMed  Article  CAS  Google Scholar 

  68. 68.

    McLeod RL, Gertner SB, Hey JA. Species differences in the cardiovascular responses to histamine H3 receptor activation. Eur J Pharmacol. 1994;259:211–214.

    PubMed  Article  CAS  Google Scholar 

  69. 69.

    Akah PA, Oli AN, Enwerem NM, Gamaneil K. Preliminary studies on purgative effect of Carica papaya root extract. Fitoterapia. 1997;68:327–331.

    Google Scholar 

  70. 70.

    Ramstad E. Pharmacognosy. London, New York: Blakiston Division, New York: McGraw–Hill; 1959:28–50.

  71. 71.

    Di-Carlo G, Autore G, Izzo A, et al. Inhibition of intestinal motility and secretion by flavonoids in mice and rats: structure activity relationships. J Pharma Pharmacol. 1993;45:1054–1059.

    Article  CAS  Google Scholar 

  72. 72.

    Carlo GD, Mascolo N, Izzo AA, Capasso F. Flavonoids: Old and new class of natural therapeutic drug. Life Sci. 1999;65:337–339.

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the Pakistan Medical Research Council. We thank Dr Graeme Cane, Head, Center of English Language, for language correction.

Conflict of interest

No competing financial interests exist.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anwarul-Hassan Gilani.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mehmood, M.H., Aziz, N., Ghayur, M.N. et al. Pharmacological Basis for the Medicinal Use of Psyllium Husk (Ispaghula) in Constipation and Diarrhea. Dig Dis Sci 56, 1460–1471 (2011). https://doi.org/10.1007/s10620-010-1466-0

Download citation

Keywords

  • Plantago ovata
  • Psyllium husk
  • Ispaghula
  • Spasmodic
  • Laxative
  • Antispasmodic
  • Antidiarrheal