Digestive Diseases and Sciences

, Volume 56, Issue 3, pp 792–798 | Cite as

Immune Phenotype of Children with Newly Diagnosed and Gluten-Free Diet-Treated Celiac Disease

  • Áron Cseh
  • Barna Vásárhelyi
  • Balázs Szalay
  • Kriszta Molnár
  • Dorottya Nagy-Szakál
  • András Treszl
  • Ádám Vannay
  • András Arató
  • Tivadar Tulassay
  • Gábor Veres
Original Article



Recent data suggest the involvement of both the adaptive and the innate immune system in celiac disease (CD). However, little is known about the immune phenotype of children with CD and its alteration upon dietary intervention.


We characterized the prevalence of major interacting members of the adaptive and innate immune system in peripheral blood of newly diagnosed children with CD and tested its alteration with the improvement of clinical signs after the introduction of gluten-free diet (GFD).


Peripheral blood was taken from ten children with biopsy-proven CD at the time of diagnosis and after the resolution of clinical symptoms following GFD. As controls, 15 children with functional abdominal pain were enrolled. The prevalence of the cells of adaptive and innate immunity was measured with labeled antibodies against surface markers and intracellular FoxP3 using a flow cytometer.


Patients with CD were found to have lower T helper, Th1 and natural killer (NK), NKT and invariant NKT cell prevalence and with higher prevalence of activated CD4+ cells, myeloid dendritic cells (DC) and Toll-like receptor (TLR) 2 and TLR-4 positive DCs and monocytes compared to controls. After resolution of symptoms on GFD, the majority of these changes normalized, although the prevalence of NK and NKT cell, DC and TLR-2 expressing DCs and monocytes remained abnormal.


The immune phenotype in childhood CD indicates the implication of both adaptive and innate immune system. The normalization of immune abnormalities occurs on GFD, but the kinetics of this process probably differs among different cell types.


Celiac disease Lymphocyte Regulatory T cell Dendritic cell Monocyte Toll-like receptor 


  1. 1.
    Schuppan D, Junker Y, Barisani D. Celiac disease: from pathogenesis to novel therapies. Gastroenterology. 2009;137:1912–1933.CrossRefPubMedGoogle Scholar
  2. 2.
    Bardella MT, Fredella C, Saladino V, et al. Gluten intolerance: gender- and age-related differences in symptoms. Scand J Gastroenterol. 2005;40:15–19.CrossRefPubMedGoogle Scholar
  3. 3.
    Thomson AB, Keelan M, Thiesen A, Clandinin MT, Ropeleski M, Wild GE. Small bowel review: diseases of the small intestine. Dig Dis Sci. 2001;46:2555–2566.CrossRefPubMedGoogle Scholar
  4. 4.
    Ciccocioppo R, Di Sabatino A, Corazza GR. The immune recognition of gluten in celiac disease. Clin Exp Immunol. 2005;140:408–416.CrossRefPubMedGoogle Scholar
  5. 5.
    Maiuri L, Ciacci C, Ricciardelli I, et al. Association between innate response to gliadin and activation of pathogenic T cells in celiac disease. Lancet. 2003;362:30–37.CrossRefPubMedGoogle Scholar
  6. 6.
    Koning F. Celiac disease: sandwiched between innate and adaptive immune responses induced by gluten. J Pediatr Gastroenterol Nutr. 2008;46:E8–E9.CrossRefPubMedGoogle Scholar
  7. 7.
    Di Sabatino A, Bertrandi E, Casadei Maldini M, Pennese F, Proietti F, Corazza GR. Phenotyping of peripheral blood lymphocytes in adult celiac disease. Immunology. 1998;95:572–576.CrossRefPubMedGoogle Scholar
  8. 8.
    Camarero C, Leon F, Sanchez L, Asensio A, Roy G. Age-related variation of intraepithelial lymphocytes subsets in normal human duodenal mucosa. Dig Dis Sci. 2007;52:685–691.CrossRefPubMedGoogle Scholar
  9. 9.
    León F, Sánchez L, Camarero C, Roy G. Cytokine production by intestinal intraepithelial lymphocyte subsets in celiac disease. Dig Dis Sci. 2005;50:593–600.CrossRefPubMedGoogle Scholar
  10. 10.
    O’Keeffe J, Mills K, Jackson J, Feighery C. T cell proliferation, MHC class II restriction and cytokine products of gliadin-stimulated peripheral blood mononuclear cells (PBMC). Clin Exp Immunol. 1999;117:269–276.CrossRefPubMedGoogle Scholar
  11. 11.
    Kerttula TO, Hällström O, Mäki M. Phenotypical characterization of peripheral blood T cells in patients with celiac disease: elevation of antigen-primed CD45RO + T lymphocytes. Immunology. 1995;86:104–109.PubMedGoogle Scholar
  12. 12.
    Penttila IA, Gibson CE, Forrest BD, Cummins AG, LaBrooy JT. Lymphocyte activation as measured by interleukin-2 receptor expression to gluten fraction 111 in celiac disease. Immunol Cell Biol. 1990;68:155–160.CrossRefPubMedGoogle Scholar
  13. 13.
    Perticarari S, Prodan M, Fragonas E, Canova S, Presani G. CD69 expression on alpha-gliadin-specific T cells in celiac disease. Eur J Histochem. 2002;46:13–22.PubMedGoogle Scholar
  14. 14.
    Arato A, Savilahti E, Tainio VM, Verkasalo M, Klemola T. HLA-DR expression, natural killer cells and IgE containing cells in the jejunal mucosa of celiac children. Gut. 1987;28:988–994.CrossRefPubMedGoogle Scholar
  15. 15.
    Halstensen TS, Farstad IN, Scott H, Fausa O, Brandtzaeg P. Intraepithelial TcR alpha/beta + lymphocytes express CD45RO more often than the TcR gamma/delta + counterparts in celiac disease. Immunology. 1990;71(4):460–466.PubMedGoogle Scholar
  16. 16.
    Granzotto M, dal Bo S, Quaglia S, et al. Regulatory T-cell function is impaired in celiac disease. Dig Dis Sci. 2009;54:1513–1519.CrossRefPubMedGoogle Scholar
  17. 17.
    Tiittanen M, Westerholm-Ormio M, Verkasalo M, Savilahti E, Vaarala O. Infiltration of forkhead box P3-expressing cells in small intestinal mucosa in celiac disease but not in type 1 diabetes. Clin Exp Immunol. 2008;152:498–507.CrossRefPubMedGoogle Scholar
  18. 18.
    Vorobjova T, Uibo O, Heilman K, et al. Increased FOXP3 expression in small-bowel mucosa of children with celiac disease and type I diabetes mellitus. Scand J Gastroenterol. 2009;44:422–430.CrossRefPubMedGoogle Scholar
  19. 19.
    MacDonald TT, Vossenkamper A, Di Sabatino A. Antigen presenting cells and T cell interactions in the gastrointestinal tract. Mol Nutr Food Res. 2009;53:947–951.CrossRefPubMedGoogle Scholar
  20. 20.
    Bernardo D, van Hoogstraten IM, Verbeek WH, et al. Decreased circulating iNKT cell numbers in refractory celiac disease. Clin Immunol. 2008;126:172–179.CrossRefPubMedGoogle Scholar
  21. 21.
    Grose RH, Thompson FM, Cummins AG. Deficiency of 6B11 + invariant NK T-cells in celiac disease. Dig Dis Sci. 2008;53:1846–1851.CrossRefPubMedGoogle Scholar
  22. 22.
    van der Vliet HJ, von Blomberg BM, Nishi N, et al. Circulating V(alpha24 +) Vbeta11 + NKT cell numbers are decreased in a wide variety of diseases that are characterized by autoreactive tissue damage. Clin Immunol. 2001;100:144–148.CrossRefPubMedGoogle Scholar
  23. 23.
    Ciccocioppo R, Ricci G, Rovati B, et al. Reduced number and function of peripheral dendritic cells in celiac disease. Clin Exp Immunol. 2007;149:487–496.CrossRefPubMedGoogle Scholar
  24. 24.
    Vuckovic S, Withers G, Harris M, et al. Decreased blood dendritic cell counts in type 1 diabetic children. Clin Immunol. 2007;123:281–288.CrossRefPubMedGoogle Scholar
  25. 25.
    Szebeni B, Veres G, Dezsofi A, et al. Increased mucosal expression of Toll-like receptor (TLR)2 and TLR4 in celiac disease. J Pediatr Gastroenterol Nutr. 2007;45:187–193.CrossRefPubMedGoogle Scholar
  26. 26.
    Walker-Smith JA, Guandalini S, Schmitz J, et al. Revised criteria for diagnosis of celiac disease. Report of Working Group of European Society of Paediatric Gastroenterology and Nutrition. Arch Dis Child. 1990;65:909–911.CrossRefGoogle Scholar
  27. 27.
    Marsh M. Gluten, major histocompability complex and small intestine. Gastroenterology. 1992;102:330–354.PubMedGoogle Scholar
  28. 28.
    Mastrandrea F, Semeraro FP, Coradduzza G, et al. CD34 + hemopoietic precursor and stem cells traffic in peripheral blood of celiac patients is significantly increased but not directly related to epithelial damage severity. Eur Ann Allergy Clin Immunol. 2008;40(3):90–103.PubMedGoogle Scholar
  29. 29.
    Lahat N, Shapiro S, Karban A, Gerstein R, Kinarty A, Lerner A. Cytokine profile in celiac disease. Scand J Immunol. 1999;49:441–446.CrossRefPubMedGoogle Scholar
  30. 30.
    O’Donoghue DP, Lancaster-Smith M, Laviniere P, Kumar PJ. T cell depletion in untreated adult celiac disease. Gut. 1976;17:328–331.CrossRefPubMedGoogle Scholar
  31. 31.
    Saurer L, Mueller C. T cell-mediated immunoregulation in the gastrointestinal tract. Allergy. 2009;64:505–519.CrossRefPubMedGoogle Scholar
  32. 32.
    Kantele JM, Savilahti E, Westerholm-Ormio M, et al. Decreased numbers of circulating plasmablasts and differences in IgA1-plasmablast homing to skin in celiac disease and dermatitis herpetiformis. Clin Exp Immunol. 2009;156:535–541.CrossRefPubMedGoogle Scholar
  33. 33.
    Agardh D, Lynch K, Brundin C, Ivarsson SA, Lernmark A, Cilio CM. Reduction of tissue transglutaminase autoantibody levels by gluten-free diet is associated with changes in subsets of peripheral blood lymphocytes in children with newly diagnosed celiac disease. Clin Exp Immunol. 2006;144:67–75.CrossRefPubMedGoogle Scholar
  34. 34.
    Frisullo G, Nociti V, Iorio R, et al. Increased CD4 + CD25 + Foxp3 + T cells in peripheral blood of celiac disease patients: correlation with dietary treatment. Hum Immunol. 2009;70:430–435.CrossRefPubMedGoogle Scholar
  35. 35.
    Kool M, Lambrecht BN. Dendritic cells in asthma and COPD: opportunities for drug development. Curr Opin Immunol. 2007;19:701–710.CrossRefPubMedGoogle Scholar
  36. 36.
    Weiskopf D, Weinberger B, Grubeck-Loebenstein B. The aging of the immune system. Transpl Int. 2009;22:1041–1050.CrossRefPubMedGoogle Scholar
  37. 37.
    Aspinall R. Age-related changes in the function of T cells. Microsc Res Tech. 2003;62:508–513.CrossRefPubMedGoogle Scholar
  38. 38.
    Verkasalo MA, Arató A, Savilahti E, Tainio VM. Effect of diet and age on jejunal and circulating lymphocyte subsets in children with celiac disease: persistence of CD4-8-intraepithelial T cells through treatment. Gut. 1990;31:422–425.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Áron Cseh
    • 1
  • Barna Vásárhelyi
    • 1
    • 2
  • Balázs Szalay
    • 1
  • Kriszta Molnár
    • 1
  • Dorottya Nagy-Szakál
    • 1
  • András Treszl
    • 1
  • Ádám Vannay
    • 1
  • András Arató
    • 3
  • Tivadar Tulassay
    • 3
  • Gábor Veres
    • 3
  1. 1.Research Group for Pediatrics and NephrologySemmelweis University and Hungarian Academy of Sciences, First Department of PediatricsBudapestHungary
  2. 2.Department of Laboratory MedicineSemmelweis UniversityBudapestHungary
  3. 3.First Department of PediatricsSemmelweis UniversityBudapestHungary

Personalised recommendations