Protective Effects of Black Cumin (Nigella sativa) Oil on TNBS-Induced Experimental Colitis in Rats

Abstract

Background

The pathogenesis and treatment of ulcerative colitis remain poorly understood. The aim of the present study is to investigate the effects of black cumin (Nigella sativa) oil on rats with colitis.

Methods

Experimental colitis was induced with 1 mL trinitrobenzene sulfonic acid (TNBS) in 40% ethanol by intracolonic administration with 8-cm-long cannula under ether anesthesia to rats in colitis group and colitis + black cumin oil group. Rats in the control group were given saline at the same volume by intracolonic administration. Black cumin oil (BCO, Origo “100% natural Black Cumin Seed Oil,” Turkey) was given to colitis + black cumin oil group by oral administration during 3 days, 5 min after colitis induction. Saline was given to control and colitis groups at the same volume by oral administration. At the end of the experiment, macroscopic lesions were scored and the degree of oxidant damage was evaluated by colonic total protein, sialic acid, malondialdehyde, and glutathione levels, collagen content, and tissue factor, superoxide dismutase, and myeloperoxidase activities. Tissues were also examined by histological and cytological analysis. Proinflammatory cytokines [tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and IL-6], lactate dehydrogenase activity, and triglyceride and cholesterol levels were analyzed in blood samples.

Results

We found that black cumin oil decreased the proinflammatory cytokines, lactate dehydrogenase, triglyceride, and cholesterol, which were increased in colitis.

Conclusions

BCO, by preventing inflammatory status in the blood, partly protected colonic tissue against experimental ulcerative colitis.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Nieto N, Torres MI, Fernandez MI, et al. Experimental ulcerative colitis impairs antioxidant defense system in rat intestine. Dig Dis Sci. 2000;45:1820–1827.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Nathan C. Points of control in inflammation. Nature. 2002;420:846–852.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    O’Shea JJ, Murray PJ. Cytokine signaling modules in inflammatory responses. Immunity. 2008;28:477–487.

    Article  PubMed  Google Scholar 

  4. 4.

    Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7:678–689.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Heller RA, Kronke M. Tumor necrosis factor receptor-mediated signalling pathways. J Cell Biol. 1994;126:5–9.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol. 2008;9:139–150.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Jensen JM, Schutze S, Forl M, Kronke M, Proksch E. Roles for tumor necrosis factor receptor p55 and sphingomyelinase in repairing the cutaneous permeability barrier. J Clin Invest. 1999;104:1761–1770.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Bauer J, Huy C, Brenmoehl J, Obermeier F, Bock J. Matrix metalloproteinase-1 expression induced by IL-1β requires acid sphingomyelinase. FEBS Lett. 2009;585:915–920.

    Article  Google Scholar 

  9. 9.

    Yoshida N, Yoshikawa T, Yamaguchi T, et al. A novel water-soluble vitamin E derivative protects against experimental colitis in rats. Antioxid Redox Signal. 1999;1:555–562.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Gulluoglu BM, Kurtel H, Gulluoglu MG, et al. Role of endothelins in trinitrobenzene sulfonic acid-induced colitis in rats. Digestion. 1999;60:484–492.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Ukil A, Maity S, Karmakar S, Datta N, Vedasiromoni JR, Das PK. Curcumin, the major component of food flavour turmeric, reduces mucosal injury in trinitrobenzene sulphonic acid-induced colitis. Br J Pharmacol. 2003;139:209–218.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Sener G, Aksoy H, Sehirli O, et al. Erdosteine prevents colonic inflammation through its antioxidant and free radical scavenging activities. Dig Dis Sci. 2007;52:2122–2132.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Campieri M, Gionchetti P, Belluzzi A, et al. Optimum dosage of 5-aminosalicylic acid as rectal enemas in patients with active ulcerative colitis. Gut. 1991;32:929–931.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Gionchetti P, Campieri M, Belluzzi A, et al. Interleukin 1 in ulcerative colitis. Gut. 1991;32:338.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Koch TR, Yuan LX, Stryker SJ, Ratliff P, Telford GL, Opara EC. Total antioxidant capacity of colon in patients with chronic ulcerative colitis. Dig Dis Sci. 2000;45:1814–1819.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Choudhary S, Keshavarzian A, Yong S, et al. Novel antioxidants zolimid and AEOL11201 ameliorate colitis in rats. Dig Dis Sci. 2001;46:2222–2230.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Zhang HQ, Ding TT, Zhao JS, et al. Therapeutic effects of Clostridium butyricum on experimental colitis induced by oxazolone in rats. World J Gastroenterol. 2009;15:1821–1828.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Ali BH, Blunden G. Pharmacological and toxicological properties of Nigella sativa. Phytother Res. 2003;17:299–305.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Terzi A, Coban S, Yildiz F, et al. Protective effects of Nigella sativa on intestinal ischemia-reperfusion injury in rats. J Invest Surg. 2010;23:21–27.

    Article  PubMed  Google Scholar 

  20. 20.

    Salem ML. Immunomodulatory and therapeutic properties of the Nigella sativa L. seed. Int Immunopharmacol. 2005;5:1749–1770.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Wallace JL, Braquet P, Ibbotson GC, MacNaugton WK, Cirino G. Assessment of the role of platelet activating factor in an animal model of inflammatory bowel disease. J Lipid Med. 1989;1:13–23.

    CAS  Google Scholar 

  22. 22.

    Gue M, Bonbonne J, Fioramonti J, et al. Stress-induced enhancement of colitis in rats: CRF and arginine vasopressin are not involved. Am J Physiol. 1997;272:G84–G91.

    CAS  PubMed  Google Scholar 

  23. 23.

    Lopez De Leon A, Rojkind M. A simple micromethod for collagen and total protein determination in formalin-fixed paraffin-embedded sections. J Histochem Cytochem. 1985;33:737–743.

    CAS  PubMed  Google Scholar 

  24. 24.

    Atay Z, Topalidis T. Cytodiagnostic der Serosen Hohlen. Atlas und Lehrbuch. Herausgeber; A&T Hannover: Wolfgang Pabst Verlag; 1992:18–19.

    Google Scholar 

  25. 25.

    Martinek RG. A rapid ultraviolet spectrophotometric lactic dehydrogenase assay. Clin Chem Acta. 1972;40:91–99.

    CAS  Article  Google Scholar 

  26. 26.

    Hillegas LM, Griswold DE, Brickson B, Albrightson-Winslow C. Assesment of myeloperoxidase activity in whole rat kidney. J Pharmacol Methods. 1990;24:285–295.

    Article  Google Scholar 

  27. 27.

    Ledwozwy A, Michalak J, Stepien A, Kadziolka A. The relationship plasma triglycerides, cholesterol, total lipids, and lipid peroxidation products during human atherosclerosis. Clin Chim Acta. 1986;55:275–284.

    Article  Google Scholar 

  28. 28.

    Beutler E. Glutathione in red blood cell metabolism. In: A Manual of Biochemical Methods. New York: Grune & Stratton; 1975:112–114.

  29. 29.

    Ingram GI, Hills M. Reference method for the one-stage prothrombin-time test on human blood. Thromb Haemost. 1976;36:237–238.

    CAS  PubMed  Google Scholar 

  30. 30.

    Mylorie AA, Collins H, Umbles C, Kyle J. Erythrocyte superoxide dismutase activity and other parameters of cupper status in rats ingesting lead acetate. Toxicol Appl Pharmacol. 1986;82:512–520.

    Article  Google Scholar 

  31. 31.

    Warren L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959;234:1971–1975.

    CAS  PubMed  Google Scholar 

  32. 32.

    Lowry OH, Rosebrough WI, Farr AL, Randal RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–275.

    CAS  PubMed  Google Scholar 

  33. 33.

    Amini-Shirazi N, Hoseini A, Ranjbar A, et al. Inhibition of tumor necrosis factor and nitrosative/oxidative stresses by Ziziphora clinopoides (Kahlioti); a molecular mechanism of protection against dextran sodium sulfate-induced colitis in mice. Toxicol Mech Methods. 2009;19(2):183–189.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Babbs CF. Oxygen radicals in ulcerative colitis. Free Radic Biol Med. 1992;13:169–181.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Schauer R, Kelm S, Reuter G, Roggentin P, Shaw L. Biochemistry and role of sialic acid. In: Rsebberg A, ed. Biology of Sialic Acids. New York: Plenum; 1995.

    Google Scholar 

  36. 36.

    Elson CO, Sartor RB, Tennyson GS, Riddell RH. Experimental models of inflammatory bowel disease. Gastroenterology. 1995;109:1344–1367.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Grisham MB. Oxidants and free radicals in inflammatory bowel disease. Lancet. 1994; 24:344(8926):859–861.

    Google Scholar 

  38. 38.

    Guo X, Wang WP, Ko JK, Cho CH. Involvement of neutrophils and free radicals in the potentiating effects of passive cigarette smoking on inflammatory bowel disease in rats. Gastroenterology. 1999;117:884–892.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    van der Veen BS, de Winther MP, Heeringa P. Myeloperoxidase: molecular mechanisms of action and their relevance to human health and disease. Antioxid Redox Signal. 2009;11:2899–2937.

    Article  PubMed  Google Scholar 

  40. 40.

    Shiratora Y, Aoki S, Takada H, et al. Oxygen-derived free radical generating capacity of polymorphonuclear cells in patients with ulcerative colitis. Digestion. 1989;44:163–171.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Scarpa M, Romanato G, Manzato E, et al. Restorative proctocolectomy for ulcerative colitis: Impact on lipid metabolism and adipose tissue and serum fatty acids. J Gastrointest Surg. 2008;12:279–287.

    Article  PubMed  Google Scholar 

  42. 42.

    Hardardottir I, Doerrler W, Feingold KR, Grunfeld C. Cytokines stimulate lipolysis and decrease lipoprotein lipase activity in cultured fat cells by a prostaglandin independent mechanism. Biochem Biophys Res Commun. 1992;186:237–243.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Bauer J, Liebisch G, Hofmann C, et al. Lipid alterations in experimental murine colitis: role of ceramide and imipramine for matrix metalloproteinase-1 expression. PLoS ONE. 2009;4(9):e7197.

    Article  PubMed  Google Scholar 

  44. 44.

    Stark G. Functional consequences of oxidative membrane damage. J Membr Biol. 2005;205:1–16.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Isozaki Y, Yoshida N, Kuroda M, et al. Effect of a novel water-soluble vitamin E derivative as a cure for TNBS induced colitis in rats. Int J Mol Med. 2006;17:497–502.

    CAS  PubMed  Google Scholar 

  46. 46.

    Colon AL, Madrigal JL, Menchen LA, et al. Stress increases susceptibility to oxidative/nitrosative mucosal damage in an experimental model of colitis in rats. Dig Dis Sci. 2004;49:1713–1721.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    İseri SO, Sener G, Saglam B, Gedik N, Ercan F, Yegen BC. Oxytocin ameliorates oxidative colonic inflammation by a neutrophil-dependent mechanism. Peptides. 2005;26(3):483–491.

    Article  PubMed  Google Scholar 

  48. 48.

    Khalife KH, Lupidi G. Nonenzymatic reduction of thymoquinone in physiological conditions. Free Radic Res. 2007;41:153–161.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Badary OA, Taha RA, Gamal El-Din AM, Abdel-Wahab MH. Thymoquinone is a potent superoxide anion scavenger. Drug Chem Toxicol. 2003;26:87–98.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Ramadan MF, Kroh LW, Morsel JT. Radical scavenging activity of black cumin (Nigella sativa L.), coriander (Coriandrum sativum L.), and niger (Guizotia abyssinica Cass.) crude seed oils and oil fractions. J Agric Food Chem. 2003;51:6961–6969.

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Ruggiero C, Lattanzio F, Lauretani F, Gasperini B, Andres-Lacueva C, Cherubini A. Omega—3 polyunsaturated fatty acids and immune-mediated diseases: Inflammatory bowel disease and rheumatoid arthritis. Curr Pharm Des. 2009;15:4135–4148.

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Hekmatdoost A, Feizabadi MM, Djazayery A, et al. The effect of dietary oils on cecal microflora in experimental colitis in mice. Indian J Gastroenterol. 2008;27:186–189.

    PubMed  Google Scholar 

  53. 53.

    Wanasundara UN, Shahidi F. Canola extract as an alternative natural antioxidant for canola oil. J Am Oil Chem Soc. 1994;71:817–822.

    CAS  Article  Google Scholar 

  54. 54.

    Bachlie E. History of tissue factor. Br J Haematol. 2000;110:248–255.

    Article  Google Scholar 

  55. 55.

    Lwaleed BA, Francis JL, Chrisholm M. Urinary tissue factor levels in neoplastic disease. Ann Saudi Med. 2000;20:197–201.

    CAS  PubMed  Google Scholar 

  56. 56.

    Danese S, Papa A, Saibeni S, Repici A, Malesci A, Vecchi M. Inflammation and coagulation in inflammatory bowel disease: the clot thickens. Am J Gastroenterol. 2007;102:174–186.

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Anthoni C, Russell J, Wood KC, et al. Tissue factor: a mediator of inflammatory cell recruitment, tissue injury, and thrombus formation in experimental colitis. J Exp Med. 2007;204(7):1595–1601.

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Fries W, Pagiaro E, Canova E, et al. The effect of heparin on trinitrobenzene sulphonic acid-induced colitis in the rat. Aliment Pharmacol Ther. 1998;12:229–236.

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Vowinkel T, Anthoni C, Wood KC, et al. CD40-CD40 ligand mediates the recruitment of leukocytes and platelets in the inflamed murine colon. Gastroenterology. 2007;132:955–965.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tugba Tunali Akbay.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Isik, F., Tunali Akbay, T., Yarat, A. et al. Protective Effects of Black Cumin (Nigella sativa) Oil on TNBS-Induced Experimental Colitis in Rats. Dig Dis Sci 56, 721–730 (2011). https://doi.org/10.1007/s10620-010-1333-z

Download citation

Keywords

  • Colitis
  • Nigella sativa
  • Inflammation
  • Tissue factor activity
  • Oxidant damage