Skip to main content

Advertisement

Log in

Proinflammatory and Anti-inflammatory Cytokines Present in the Acute Phase of Experimental Colitis Treated with Saccharomyces boulardii

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Purpose

To study the proinflammatory and anti-inflammatory cytokines present in the acute phase of trinitrobenzene sulfonic acid (TNBS)-induced experimental colitis treated with Saccharomyces boulardii.

Methods

Thirty male Wistar rats were divided into three groups: (1) treated group—received Saccharomyces boulardii for 14 days; (2) non-treated group—received sodium chloride solution for 14 days; (3) control group. Colitis was induced on the seventh day of the study in the treated and the non-treated groups using TNBS (10 mg) dissolved in 50% ethanol. Quantification of cytokines, including interleukin (IL)-1β (IL-1β), IL-6, transforming growth factor-β (TGF-β), IL-10 and tumor necrosis factor-α (TNF-α), in the serum and colonic tissue collected on day 14 were carried out using an enzyme-linked immunosorbent assay (ELISA).

Results

The mean concentrations of TGF-β in both the serum and the colonic tissue of the treated group were statistically higher than that of the control group. The mean concentration of TGF-β in the colonic tissue of the non-treated group was also statistically higher than the control group.

Conclusion

The group treated with Saccharomyces boulardii showed increased amounts of TGF-β, an anti-inflammatory cytokine, during the acute phase of colitis. There were no differences in the amount of TNF-α, IL-1β, IL-6, and IL-10 between the treated and the non-treated or the control groups during the acute phase of experimental colitis induced by TNBS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Elson CO, Sartor RB, Tennyson G, Riddel R. Experimental models of IBD. Gastroenterology. 1995;109:1344–1367.

    Article  CAS  PubMed  Google Scholar 

  2. Sartor RB. Review article: how relevant to human inflammatory bowel disease are current animal models of intestinal inflammation? Aliment Pharmacol Ther. 1997;11(S3):89–97.

    PubMed  Google Scholar 

  3. Blumberg RS, Saubermann LJ, Strober W. Animal models of mucosal inflammation and their relation to human inflammatory bowel disease. Curr Opin Immunol. 1999;11:648–656.

    Article  CAS  PubMed  Google Scholar 

  4. Morris GP, Beck PL, Heridge MS, Depew WT, Szewczuk MR, Wallace JL. Hapten-induced models of chronic inflammation and ulceration in the rat colon. Gastroenterology. 1989;96:795–803.

    CAS  PubMed  Google Scholar 

  5. Cabezas ME, Gálvez J, Lorente MD, et al. Dietary fiber down-regulates colonic tumor necrosis factor α and nitric oxide production in trinitrobenzenesulfonic acid-induced colitic rats. J Nutr. 2002;132:3263–3271.

    Google Scholar 

  6. Cherbut C, Michel C, Lecannu G. The prebiotic characteristics of fructooligosaccharides are necessary for reduction of TNBS-induced colitis in rats. J Nutr. 2003;133:21–27.

    CAS  PubMed  Google Scholar 

  7. Peran L, Camuesco D, Comalada M, et al. Preventative effects of a probiotic, Lactobacillus salivarius ssp. Salivarius, in the TNBS model of rat colitis. World J Gastroenterol. 2005;11:5185–5192.

    PubMed  Google Scholar 

  8. Surawicz CM, Elmer GW, Speelman P, McFarland LV, Chinn J, Van Belle G. Prevention of antibiotic-associated diarrhea by Saccharomyces boulardii: a prospective study. Gastroenterology. 1989;96:981–988.

    CAS  PubMed  Google Scholar 

  9. McFarland LV, Surawicz CM, Greenberg RN, et al. Prevention of β-lactam-associated diarrhea by Saccharomyces boulardii compared with placebo. Am J Gastroenterol. 1995;90:439–448.

    CAS  PubMed  Google Scholar 

  10. McFarland LV, Surawicz CM, Greenberg RN, et al. A randomized placebo-controlled trial of Saccharomyces boulardii in combination with standard antibiotics for Clostridium difficile disease. JAMA. 1994;271:1913–1918.

    Article  CAS  PubMed  Google Scholar 

  11. Surawicz CM, McFarland LV, Greenberg RN, et al. The search for a better treatment for recurrent Clostridium difficile disease: use of high-dose vancomycin combined with Saccharomyces boulardii. Clin Infect Dis. 2000;31:1012–1017.

    Article  CAS  PubMed  Google Scholar 

  12. Buts JP, Corthier G, Delmee M. Saccharomyces boulardii for Clostridium difficile-associated enteropathies in infants. J Pediatr Gastroenterol Nutr. 1993;16:419–425.

    Article  CAS  PubMed  Google Scholar 

  13. Kurugöl Z, Koturoglu G. Effects of Saccharomyces boulardii in children with acute diarrhea. Acta Paediatr. 2005;94:44–47.

    Article  PubMed  Google Scholar 

  14. Kollaritsch H, Holst H, Grobara P, Wiedermann G. Prevention of traveler’s diarrhea with Saccharomyces boulardii. Results of a placebo-controlled double-blind study. Fortschr Med. 1993;111:152–156.

    CAS  PubMed  Google Scholar 

  15. Bléichner G, Blehaut H, Mentec H, Moyse D. Saccharomyces boulardii prevents diarrhea in critically ill tube-fed patients. A multicenter, randomized, double-blind placebo-controlled trial. Intensive Care Med. 1997;23:517–523.

    Article  PubMed  Google Scholar 

  16. Guslandi M, Mezzi G, Sorghi M, Testoni PA. Saccharomyces boulardii in maintenance treatment of Crohn’s disease. Dig Dis Sci. 2000;45:1462–1464.

    Article  CAS  PubMed  Google Scholar 

  17. Guslandi M, Giollo P, Testoni PA. A pilot trial of Saccharomyces boulardii in ulcerative colitis. Eur J Gastroenterol Hepatol. 2003;15:697–698.

    Article  PubMed  Google Scholar 

  18. Lee SK, Kim HJ, Chi SG, Kim YW. Saccharomyces boulardii ameliorates trinitrobenzenesulphonic acid-induced experimental colitis in rats: attenuation of pro-inflammatory gene expression. Gastrointest Endosc. 2006;63:AB 222.

    Google Scholar 

  19. Dalmasso G, Cottrez F, Imbert V, et al. Saccharomyces boulardii inhibits inflammatory bowel disease by trapping T cells in mesenteric lymph nodes. Gastroenterology. 2006;131:1812–1825.

    Article  CAS  PubMed  Google Scholar 

  20. Rogler G, Andus T. Cytokines in Inflammatory bowel disease. World J Surg. 1998;22:382–389.

    Article  CAS  PubMed  Google Scholar 

  21. Osman N, Adawi D, Adawi D, et al. Modulation of the effects of dextran sulfate sodium-induced acute colitis by the administration of different probiotic strains of Lactobacillus and Bifidobacterium. Dig Dis Sci. 2004;49:320–327.

    Article  CAS  PubMed  Google Scholar 

  22. Fuss IJ, Boirivant M, Lacy B, Strober W. The interrelated roles of TGF-β and IL-10 in the regulation of experimental colitis. J.Immunol. 2002;168:900–908.

    CAS  PubMed  Google Scholar 

  23. Torres MI, Garcia-Martin M, Fernandez MI, Nieto N, Gil A, Rios A. Experimental colitis induced by trinitrobenzenesulfonic acid: an ultrastructural and histochemical study. Dig Dis Sci. 1999;44:2523–2529.

    Article  CAS  PubMed  Google Scholar 

  24. Lamine F, Eutamene H, Fioramonti J, Bueno L, Theodorou V. Colonic responses to Lactobacillus farciminis treatment in trinitrobenzene sulphonic acid-induced colitis in rats. Scand J Gastroenterol. 2004;39:1250–1258.

    Article  CAS  PubMed  Google Scholar 

  25. Foligné B, Nutten S, Steidler L, et al. Recommendations for improved use of the murine TNBS-induced colitis model in evaluating anti-inflammatory properties of lactic acid bacteria: technical and microbiological aspects. Dig Dis Sci. 2006;51:390–400.

    Article  PubMed  Google Scholar 

  26. Sugimoto K, Hanai H, Tozawa K, et al. Curcumin prevents and ameliorates trinitrobenzene sulfonic acid–induced colitis in mice. Gastroenterology. 2002;123:1912–1922.

    Article  CAS  PubMed  Google Scholar 

  27. Coeuret V, Gueguen M, Vernoux JP. Numbers and strains of lactobacilli in some probiotic products. Int J Food Microbiol. 2004;97:147–156.

    Article  PubMed  Google Scholar 

  28. Szajewska H, Setty M, Mrukowicz J, Guandalini S. Probiotics in gastrointestinal diseases in children: hard and not-so-hard evidence of efficacy. J Pediatr Gastroenterol Nutr. 2006;42:454–475.

    Article  PubMed  Google Scholar 

  29. Penna FJ, Filho LA, Calçado AC, Junior HR, Nicolli JR. Up-to-date clinical and experimental basis for the use of probiotics. J Pediatr (Rio J). 2000;76(Suppl 1):S209–S217.

    Google Scholar 

  30. Isolauri E, Kirjavainen PV, Salminen S. Probiotics: a role in the treatment of intestinal infection and inflammation? Gut. 2002;50(Suppl 3):III54–III59.

    Article  PubMed  Google Scholar 

  31. Neurath MF, Fuss I, Kelsall BL, Presky DH, Waegell W, Strober W. Experimental granulomatous colitis in mice is abrogated by induction of TGF-beta-mediated oral tolerance. J Exp Med. 1996;183:2605–2616.

    Article  CAS  PubMed  Google Scholar 

  32. Mulsow JJ, Watson RW, Fitzpatrick JM, O’Connell PR. Transforming growth factor-beta promotes pro-fibrotic behavior by serosal fibroblasts via PKC and ERK1/2 mitogen activated protein kinase cell signaling. Ann Surg. 2005;242:880–889.

    Article  PubMed  Google Scholar 

  33. Monteleone I, Pallone F, Monteleone G. Interleukin-23 and Th17 cells in the control of gut inflammation. Mediators Inflamm. 2009;2009:297645.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Lucia Sdepanian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grijó, N.N., Borra, R.C. & Sdepanian, V.L. Proinflammatory and Anti-inflammatory Cytokines Present in the Acute Phase of Experimental Colitis Treated with Saccharomyces boulardii . Dig Dis Sci 55, 2498–2504 (2010). https://doi.org/10.1007/s10620-009-1072-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-009-1072-1

Keywords

Navigation