Skip to main content

Advertisement

Log in

The Redox State of the Glutathione/Glutathione Disulfide Couple Mediates Intracellular Arginase Activation in HCT-116 Colon Cancer Cells

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Emerging studies have implicated arginase hyperactivity in the dysregulation of nitric oxide synthesis, which can lead to the development of vascular disease and the promotion of tumor cell growth. Recently, we showed that cysteine, in the presence of molecular iron, promotes arginase activity by driving the Fenton reaction. However, the exact mechanism of arginase activation in the cell induced by oxidative stress is unknown.

Aim

The aim of the present study is to examine whether intracellular arginase is regulated by the cellular redox status of glutathione.

Method

To test this hypothesis, the glutathione/glutathione disulfide redox couple was altered in colon cancer cells with the thiol-specific oxidant, diamide, or the glutathione inhibitor, buthionine-(S,R)-sulfoximine, and the activity of the arginase in the cells was assessed.

Results

Treatment of cells with diamide, a thiol-specific oxidant, resulted in a dose-dependent decrease in the glutathione/glutathione disulfide ratio that was associated with the loss of glutathione and a coincident increase in arginase activity and arginase-1 levels in drug-treated cells compared with untreated cells. These results show that oxidation-induced redox changes of glutathione are of sufficient magnitude to control the activity of arginase in the cells. Thus, the physiologic modulation of the glutathione/glutathione disulfide ratio could prove to be a fundamental parameter for the control of arginase activity in pathological conditions of increased oxidative stress.

Conclusion

This is the first evidence supporting the ex vivo regulation of arginase activity through the redox modulation of intracellular glutathione. The potential adaptive and pathological consequences of glutathione redox regulation of arginase activity are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Morris SM Jr. Arginine synthesis, metabolism, and transport: regulators of nitric oxide synthesis. In: Laskin JD, Laskin DL, eds. Cellular and Molecular Biology of Nitric Oxide. New York, NY: Dekker; 1999:57–85.

    Google Scholar 

  2. Wu G, Flynn NE, Knabe DA, Jaeger LA. A cortisol surge mediates the enhanced polyamine synthesis in porcine enterocytes during weaning. Am J Physiol Regul Integr Comp Physiol. 2000;279:554–559.

    Google Scholar 

  3. Chang CI, Liao JC, Kuo L. Arginase modulates nitric oxide production in activated macrophages. Am J Physiol. 1998;274:342–348.

    Google Scholar 

  4. Kepka-Lenhart D, Mistry SK, Wu G, Morris SM Jr. Arginase I: a limiting factor for nitric oxide and polyamine synthesis by activated macrophages? Am J Physiol Regul Integr Comp Physiol. 2000;279:2237–2242.

    Google Scholar 

  5. Zhang C, Hein TW, Wang W, Chang CI, Kuo L. Constitutive expression of arginase in microvascular endothelial cells counteracts nitric oxide-mediated vasodilatory function. FASEB J. 2001;15:1264–1266.

    Article  CAS  PubMed  Google Scholar 

  6. Auvinen M. Cell transformation, invasion, and angiogenesis: a regulatory role for ornithine decarboxylase and polyamines? J Natl Cancer Inst. 1997;89:533–537.

    Article  CAS  PubMed  Google Scholar 

  7. Gerner EW, Meyskens FL Jr. Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer. 2004;4:781–792.

    Article  CAS  PubMed  Google Scholar 

  8. Horowitz S, Binion DG, Nelson VM, et al. Increased arginase activity and Endothelial dysfunction in human inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol. 2007;292:1323–1336.

    Article  Google Scholar 

  9. Yerushalmi HF, Besselsen DG, Ignatenko NA, et al. Role of polyamines in arginine-dependent colon carcinogenesis in Apc(Min) (/+) mice. Mol Carcinog. 2006;45:764–773.

    Article  CAS  PubMed  Google Scholar 

  10. Perembska Z, Zabek J, Graboń W, Rahden-Strarŏn I, Baraończyk-Kuzma A. Increase arginase in colon cancer. Clin Chim Acta. 2001;305:157–165.

    Article  Google Scholar 

  11. Jänne J, Pösö H, Raina A. Polyamines in rapid growth and cancer. Biochim Biophys Acta. 1978;473:241–293.

    PubMed  Google Scholar 

  12. Pacifi RE, Davies KJA. Protein degradation as an index of oxidative stress. Methods Enzymol. 1990;186:485–502.

    Article  Google Scholar 

  13. Stadtman ER. Role of oxidized amino acids in protein breakdown and stability. Methods Enzymol. 1995;258:379–393.

    Article  CAS  PubMed  Google Scholar 

  14. Staal FJT, Roederer M, Herzenberg LA, Herzenberg LA. Intracellular thiols regulate activation of nuclear factor kappa B and transcription of human immunodeficiency virus. Proc Natl Acad Sci USA. 1990;87:9943–9947.

    Article  CAS  PubMed  Google Scholar 

  15. Schreck R, Rieber P, Baeuerle PA. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J. 1991;10:2247–2258.

    CAS  PubMed  Google Scholar 

  16. Toledano MB, Leonard WJ. Modulation of transcription factor NF-kappa B binding activity by oxidation-reduction in vitro. Proc Natl Acad Sci USA. 1991;88:4328–4332.

    Article  CAS  PubMed  Google Scholar 

  17. Abate C, Patel L, Rausche FJ III, Curran T. Redox regulation of fos and jun DNA-binding activity in vitro. Science. 1990;249:1157–1161.

    Article  CAS  PubMed  Google Scholar 

  18. Gilbert HF. Molecular and cellular aspects of thiol-disulfide exchange. Adv Enzymol Relat Areas Mol Biol. 1990;63:69–172.

    CAS  PubMed  Google Scholar 

  19. Clark WM. Oxidation-Reduction Potentials of Organic Systems. Baltimore, MD: Williams & Wilkins; 1960.

    Google Scholar 

  20. Iyamu EW, Perdew H, Woods GM. Cysteine-iron promotes arginase activity by driving the Fenton reaction. Biochem Biophy Res Commun. 2008;376:116–120.

    Article  CAS  Google Scholar 

  21. Rouzer CA, Scott WA, Griffith OW, Hamill AL, Cohn ZA. Depletion of glutathione selectively inhibits synthesis of leukotriene C by macrophages. Proc Natl Acad Sci USA. 1981;78:2532–2536.

    Article  CAS  PubMed  Google Scholar 

  22. Chinard FP. Photometric estimation of proline and ornithine. J Biol Chem. 1952;199:91–95.

    CAS  PubMed  Google Scholar 

  23. Iyamu EW, Asakura T, Woods GM. A colorimetric microplate assay method for high throughput analysis of arginase activity in vitro. Anal Biochem. 2008;383:332–334.

    Article  CAS  PubMed  Google Scholar 

  24. Griffith OW. Determination of glutathione and glutathione disulfide using glutathione reductase and vinylpyridine. Anal Biochem. 1980;106:207–212.

    Article  CAS  PubMed  Google Scholar 

  25. Akamatsu Y, Ohno T, Hirota K, Kagoshima H, Yodoi J, Shigesada K. Redox regulation of the DNA binding activity in transcription factor PEBP2. The roles of two conserved cysteine residues. J Biol Chem. 1997;272:14497–14500.

    Article  CAS  PubMed  Google Scholar 

  26. Shrimpton CN, Glucksman MJ, Lew RA, et al. Thiolactivation of endopeptidase EC 3.4.24.15. J Biol Chem. 1997;272:17395–17399.

    Article  CAS  PubMed  Google Scholar 

  27. Liu H, Lightfoot R, Stevens JL. Activation of heat shock factor by alkylating agents is triggered by glutathione depletion and oxidation of protein thiols. J Biol Chem. 1996;271:4805–4812.

    Article  CAS  PubMed  Google Scholar 

  28. Thengchaisri N, Hein TW, Wang W, et al. Upregulation of arginase by H2O2 impairs endothelium-dependent nitric oxide-mediated dilation of coronary arterioles. Arterioscler Thromb Vasc Biol. 2006;26:2035–2042.

    Article  CAS  PubMed  Google Scholar 

  29. Bronte V, Serafini P, De Santo C, et al. IL-4-induced arginase 1 suppresses alloreactive T cells in tumor bearing mice. J Immunol. 2003;170:270–278.

    CAS  PubMed  Google Scholar 

  30. Rodrigues-Lima F, Fensome AC, Josephs M, Evans J, Veldan RJ, Katan M. Structural requirements for catalysis and membrane targeting of mammalian enzymes with neutral sphingomyelinase and lysophospholipid phospholipase C activities. Analysis by chemical modification and site-directed mutagenesis. J Biol Chem. 2000;275:28316–28325.

    CAS  PubMed  Google Scholar 

  31. Obin M, Shang F, Gong X, Handelman G, Blumberg J, Taylor A. Redox regulation of ubiquitin-conjugating enzymes: mechanistic insights using the thiol-specific oxidant diamide. FASEB J. 1998;12:561–569.

    CAS  PubMed  Google Scholar 

  32. Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. 2nd ed. Clarendon: Oxford; 1989:90.

    Google Scholar 

  33. Meister A. Selective modification of glutathione metabolism. Science. 1983;220:472–477.

    Article  CAS  PubMed  Google Scholar 

  34. Meister A. Glutathione metabolism. Methods Enzymol. 1995;251:3–7.

    Article  CAS  PubMed  Google Scholar 

  35. Gilbert HF. Molecular and cellular aspects of thiol-disulfide exchange. Adv Enzymol. 1990;63:69–85.

    CAS  PubMed  Google Scholar 

  36. Usatyuk PV, Vepa S, Watkins T, He D, Parinandi NL, Natarajan V. Redox regulation of reactive oxygen species-induced p38 MAP kinase activation and barrier dysfunction in lung microvascular endothelial cells. Antioxid Redox Signal. 2003;5:23–30.

    Article  Google Scholar 

  37. Park HS, Huh SH, Kim MS, et al. Neuronal nitric oxide synthase (nNOS) modulates the JNK1 activity through redox mechanism: a cGMP independent pathway. Biochem Biophys Res Commun. 2006;346:408–414.

    Article  CAS  PubMed  Google Scholar 

  38. Kho CW, Lee PY, Bae KH, et al. Glutathione peroxidase 3 of Saccharomyces cerevisiae regulates the activity of methionine sulfoxide reductase in a redox state-dependent way. Biochem Biophys Res Commun. 2006;348:25–35.

    Article  CAS  PubMed  Google Scholar 

  39. Wan XS, St Clair DK. Thiol-modulating agents increase manganese superoxide dismutase activity in human lung fibroblasts. Arch Biochem Biophys. 1993;304:89–93.

    Article  CAS  PubMed  Google Scholar 

  40. Parinandi NL, Scribner WM, Vepa S, Shi S, Natarajan V. Phospholipase D activation in endothelial cells is redox sensitive. Antioxid Redox Signal. 1999;1:193–210.

    Article  CAS  PubMed  Google Scholar 

  41. Lavulo LT, Sossong TM Jr, Brigham-Burke MR, et al. Subunit-subunit interactions in trimeric arginase. Generation of active monomers by mutation of a single amino acid. J Biol Chem. 2001;276:14242–14248.

    CAS  PubMed  Google Scholar 

  42. Kanyo ZF, Scolnick LR, Ash DE, Christianson DW. Structure of a unique binuclear manganese cluster in arginase. Nature. 1996;383:554–557.

    Article  CAS  PubMed  Google Scholar 

  43. Jacob C, Holme AL, Fry FH. The sulfinic switch in proteins. Org Biomol Chem. 2004;2:1953–1956.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author wants to thank Dr. Tarak Srivastava for illuminating discussions and Mr. Harrison Perdew for critically reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efemwonkiekie W. Iyamu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iyamu, E.W. The Redox State of the Glutathione/Glutathione Disulfide Couple Mediates Intracellular Arginase Activation in HCT-116 Colon Cancer Cells. Dig Dis Sci 55, 2520–2528 (2010). https://doi.org/10.1007/s10620-009-1064-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-009-1064-1

Keywords

Navigation