Skip to main content

Adsorptive Depletion of α4 Integrinhi- and CX3CR1hi-Expressing Proinflammatory Monocytes in Patients with Ulcerative Colitis

Abstract

Background

Two main functionally distinct monocytes phenotypes are known: the CD14hiCD16 “classical” and the CD14+CD16+ “proinflammatory” phenotypes. The latter phenotype is elevated in patients with ulcerative colitis (UC) and is suspected to have a major role in the immunopathogenesis of UC.

Aim

To selectively deplete circulating proinflammatory CD14+CD16+ monocyte phenotype.

Methods

Seven corticosteroid-naïve patients with UC (clinical activity index = 8.7 ± 1.3) and seven healthy subjects were included. In patients with UC, granulocyte/monocyte adsorption (GMA) was done with an Adacolumn that selectively adsorbs leucocytes of the myeloid lineage. Blood from all subjects at baseline and from the patients immediately after the first GMA session was processed. Isolated monocytes were subjected to fluorescence-activated cell sorter analyses.

Results

The seven UC patients achieved remission (CAI ≤4) after 5–10 GMA sessions. GMA induced a strong fall in the ratio (%) of CD14+CD16+ to CD14hiCD16 monocytes, from 10.0 ± 1.4 to 3.0 ± 0.9. Further, expressions of α4 integrin (374.8 ± 26.1 mean fluorescence intensity, MFI) and CX3CR1 (49.5 ± 4.6 MFI) were significantly high on CD14+CD16+monocytes as compared with on CD14hiCD16 monocytes (169.2 ± 17.2 and 33.2 ± 3.6 MFI, respectively). Additionally, GMA significantly increased the ratio of the CD14hiCD16CCR2low “immature” monocytes from 3.74 ± 0.62 to 8.11 ± 0.56 MFI.

Conclusions

We found high expressions of α4 integrin and CX3CR1 on monocytes in patients with active UC, known to promote the extravasation of CD14+CD16+ monocytes into the mucosa. GMA effectively depletes CD14+CD16+ monocytes and concomitantly increases CD14hiCD16CCR2low “immature” monocytes; thus GMA was associated with the emergence of less inflammatory monocyte phenotype in circulation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Allison MC, Dhillon AP, Lewis WG, Pounder RE, eds. Inflammatory Bowel Disease. London: Mosby; 1998:15–95.

    Google Scholar 

  2. Baumgart DC, Carding SR. Inflammatory bowel disease: cause and immunobiology. Lancet. 2007;369:1627–1640.

    Article  PubMed  CAS  Google Scholar 

  3. Baumgart DC, Sandborn WJ. Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet. 2007;369:1641–1657.

    Article  PubMed  CAS  Google Scholar 

  4. Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007;448:427–434.

    Article  PubMed  CAS  Google Scholar 

  5. Strober W, Fuss I, Mannon P. The fundamental basis of inflammatory bowel disease. J Clin Invest. 2007;117:514–521.

    Article  PubMed  CAS  Google Scholar 

  6. Shih DQ, Targan SR. Immunopathogenesis of inflammatory bowel disease. World J Gastroenterol. 2008;14:390–400.

    Article  PubMed  CAS  Google Scholar 

  7. Shimoyama T, Sawada K, Hiwatashi N, et al. Safety and efficacy of granulocyte and monocyte adsorption apheresis in patients with active ulcerative colitis: a multicenter study. J Clin Apher. 2001;16:1–9.

    Article  PubMed  CAS  Google Scholar 

  8. Yamamoto T, Umegae S, Kitagawa T, et al. Granulocyte and monocyte adsorptive apheresis in the treatment of active distal ulcerative colitis: a prospective, pilot study. Aliment Pharmacol Ther. 2004;20:783–792.

    Article  PubMed  CAS  Google Scholar 

  9. Domenech E, Hinojosa J, Esteve-Comas M, et al. Granulocyteaphaeresis in steroid-dependent inflammatory bowel disease: a prospective, open, pilot study. Aliment Pharmacol Ther. 2004;20:1347–1352.

    Article  PubMed  CAS  Google Scholar 

  10. Suzuki Y, Yoshimura N, Saniabadi AR, Saito Y. Selective granulocyte and monocyte adsorptive apheresis as a first-line treatment for steroid naive patients with active ulcerative colitis: a prospective uncontrolled study. Dig Dis Sci. 2004;49:565–571.

    Article  PubMed  CAS  Google Scholar 

  11. Hanai H, Takeuchi K, Iida T, et al. Relationship between fecal calprotectin, intestinal inflammation, and peripheral blood neutrophils in patients with active ulcerative colitis. Dig Dis Sci. 2004;49:1438–1443.

    Article  PubMed  Google Scholar 

  12. Kanke K, Nakano M, Hiraishi H, Terano A. Clinical evaluation of granulocyte/monocyte apheresis therapy for active ulcerative colitis. Dig Liver Dis. 2004;36:811–817.

    Article  PubMed  CAS  Google Scholar 

  13. Naganuma M, Funakoshi S, Sakuraba A, et al. Granulocytapheresis is useful as an alternative therapy in patients with steroid-refractory or -dependent ulcerative colitis. Inflamm Bowel Dis. 2004;10:251–257.

    Article  PubMed  Google Scholar 

  14. Andoh A, Tsujikawa T, Inatomi O, et al. Suppression of inflammatory cytokine secretion by granulocyte/monocyte adsorptive apheresis in active ulcerative colitis. Ther Apher Dial. 2005;9:123–127.

    Article  PubMed  CAS  Google Scholar 

  15. Cuadrado E, Alonso M, de Juan M, Echaniz P, Arenas J. Regulatory T cells in patients with inflammatory bowel diseases treated with adacolumn granulocytapheresis. World J Gastroenterol. 2008;14:1521–1527.

    Article  PubMed  Google Scholar 

  16. Takeda Y, Shiobara N, Saniabadi AR, Adachi M, Hiraishi K. Adhesion dependent release of hepatocyte growth factor and interleukin-1 receptor antagonist from human blood granulocytes and monocytes: evidence for the involvement of plasma IgG, complement C3 and beta2 integrin. Inflamm Res. 2004;53:277–283.

    Article  PubMed  CAS  Google Scholar 

  17. Waitz G, Petermann S, Liebe S, Emmrich J, Ramlow W. Reduction of dendritic cells by granulocyte and monocyte adsorption apheresis in patients with ulcerative colitis. Dig Dis Sci. 2008;53:2507–2515.

    Article  PubMed  Google Scholar 

  18. Takeda H, Suzuki Y, Takeda Y, et al. A multi center study of granulocyte and monocyte adsorption apheresis therapy for ulcerative colitis—clinical efficacy and production of interleukin-1 receptor antagonist. J Clin Apher. 2008;23:105–110.

    Article  PubMed  Google Scholar 

  19. Sakimura K, Omori T, Iwashita E, et al. Clinical response is associated with elevated plasma interleukin-1 receptor antagonist during selective granulocyte and monocyte apheresis in patients with ulcerative colitis. Dig Dis Sci. 2006;51:1525–1531.

    Article  PubMed  CAS  Google Scholar 

  20. Hanai H, Watanabe F, Yamada M, et al. Correlation of serum soluble TNF-alpha receptors I and II levels with disease activity in patients with ulcerative colitis. Am J Gastroenterol. 2004;99:1532–1538.

    Article  PubMed  CAS  Google Scholar 

  21. Hanai H, Iida T, Yamada M, et al. Effects of adacolumn selective leukocytapheresis on plasma cytokines during active disease in patients with active ulcerative colitis. World J Gastroenterol. 2006;12:3393–3399.

    PubMed  CAS  Google Scholar 

  22. Kashiwagi N, Sugimura K, Koiwai H, et al. Immunomodulatory effects of granulocyte and monocyte adsorption apheresis as a treatment for patients with ulcerative colitis. Dig Dis Sci. 2002;47:1334–1341.

    Article  PubMed  CAS  Google Scholar 

  23. Aoki H, Nakamura K, Yoshimatsu Y, et al. Adacolumn selective leukocyte adsorption apheresis in patients with active ulcerative colitis: clinical efficacy, effects on plasma IL-8, and expression of Toll-like receptor 2 on granulocytes. Dig Dis Sci. 2007;52:1427–1433.

    Article  PubMed  CAS  Google Scholar 

  24. Yokoyama Y, Fukunaga K, Fukuda Y, et al. Demonstration of low-regulatory CD25High+CD4+ and high-pro-inflammatory CD28CD4+ T-Cell subsets in patients with ulcerative colitis: modified by selective granulocyte and monocyte adsorption apheresis. Dig Dis Sci. 2007;52:2725–2731.

    Article  PubMed  Google Scholar 

  25. Passlick B, Flieger D, Ziegler-Heitbrock HW. Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood. 1989;74:2527–2534.

    PubMed  CAS  Google Scholar 

  26. Belge KU, Dayyani F, Horelt A, et al. The proinflammatory CD14+CD16+DR++ monocytes are a major source of TNF. J Immunol. 2002;168:3536–3542.

    PubMed  CAS  Google Scholar 

  27. Ziegler-Heitbrock L. The CD14+CD16+ blood monocytes: their role in infection and inflammation. J Leukoc Biol. 2007;81:584–592.

    Article  PubMed  CAS  Google Scholar 

  28. Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity. 2003;19:71–82.

    Article  PubMed  CAS  Google Scholar 

  29. Strauss-Ayali D, Conrad SM, Mosser DM. Monocyte subpopulations and their differentiation patterns during infection. J Leukoc Biol. 2007;82:244–252.

    Article  PubMed  CAS  Google Scholar 

  30. Gordon S, Taylor P. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5:953–964.

    Article  PubMed  CAS  Google Scholar 

  31. Hanai H, Iida T, Takeuchi K, et al. Adsorptive depletion of elevated proinflammatory CD14+CD16+DR++ monocytes in patients with inflammatory bowel disease. Am J Gastroenterol. 2008;103:1210–1216.

    Article  PubMed  Google Scholar 

  32. Lichtiger S, Present DH, Kornbluth A, et al. Cyclosporine in severe ulcerative colitis refractory to steroid therapy. N Engl J Med. 1994;330:1841–1845.

    Article  PubMed  CAS  Google Scholar 

  33. Tsou CL, Peters W, Si Y, et al. Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J Clin Invest. 2007;117:902–909.

    Article  PubMed  CAS  Google Scholar 

  34. Serbina NV, Pamer EG. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol. 2006;7:311–317.

    Article  PubMed  CAS  Google Scholar 

  35. Saniabadi AR, Hanai H, Takeuchi K, et al. Adacolumn, an adsorptive carrier based granulocyte and monocyte apheresis device for the treatment of inflammatory and refractory diseases associated with leukocytes. Ther Apher Dial. 2003;7:48–59.

    Article  PubMed  Google Scholar 

  36. Saniabadi AR, Hanai H, Suzuki Y, et al. Adacolumn for selective leukocytapheresis as a non-pharmacological treatment for patients with disorders of the immune system: an adjunct or an alternative to drug therapy? J Clin Apher. 2005;20:171–184.

    Article  PubMed  Google Scholar 

  37. Saniabadi AR, Hanai H, Fukunaga K, et al. Therapeutic leukocytapheresis for inflammatory bowel disease. Transfus Apher Sci. 2007;37:191–200.

    Article  PubMed  Google Scholar 

  38. Grage-Griebenow E, Zawatzky R, Kahlert H, Brade L, Flad H, Ernst M. Identification of a novel dendritic cell-like subset of CD64+/CD16+ blood monocytes. Eur J Immunol. 2001;31:48–56.

    Article  PubMed  CAS  Google Scholar 

  39. Grage-Griebenow E, Flad HD, Ernst M, Bzowska M, Skrzeczynska J, Pryjma J. Human MO subsets as defined by expression of CD64 and CD16 differ in phagocytic activity and generation of oxygen intermediates. Immunobiology. 2000;202:42–50.

    PubMed  CAS  Google Scholar 

  40. Serbina NV, Jia T, Hohl TM, Pamer EG. Monocyte-mediated defense against microbial pathogens. Annu Rev Immunol. 2008;26:421–452.

    Article  PubMed  CAS  Google Scholar 

  41. Ancuta P, Rao R, Moses A, et al. Fractalkine preferentially mediates arrest and migration of CD16+ monocytes. J Exp Med. 2003;197:1701–1707.

    Article  PubMed  CAS  Google Scholar 

  42. Stievano L, Piovan E, Amadori A. C and CX3C chemokines: cell sources and physiopathological implications. Crit Rev Immunol. 2004;24:205–228.

    Article  PubMed  CAS  Google Scholar 

  43. Sans M, Danese S, de la Motte C, et al. Enhanced recruitment of CX3CR1+ T cells by mucosal endothelial cell-derived fractalkine in inflammatory bowel disease. Gastroenterology. 2007;132:139–153.

    Article  PubMed  CAS  Google Scholar 

  44. Podolsky D, Lobb R, King N, et al. Attenuation of colitis in the cotton-top tamarin by anti-alpha 4 integrin monoclonal antibody. J Clin Invest. 1993;92:372–380.

    Article  PubMed  CAS  Google Scholar 

  45. Hanai H, Watanabe F, Yamada M, et al. Adsorptive granulocyte and monocyte apheresis versus prednisolone in patients with corticosteroid-dependent moderately severe ulcerative colitis. Digestion. 2004;70:36–44.

    Article  PubMed  CAS  Google Scholar 

  46. Giampaolo B, Giuseppe P, Michele B, Alessandro M, Fabrizio S, Alfonso C. Treatment of active steroid-refractory inflammatory bowel diseases with granulocytapheresis: our experience with a prospective study. World J Gastroenterol. 2006;12:2201–2204.

    PubMed  Google Scholar 

  47. Kruis W, Dignass A, Steinhagen-Thiessen E, et al. Open label trial of granulocyte apheresis suggests therapeutic efficacy in chronically active steroid refractory ulcerative colitis. World J Gastroenterol. 2005;11:7001–7006.

    PubMed  Google Scholar 

  48. Bresci G, Parisi G, Mazzoni A, Scatena F, Capria A. Treatment of patients with acute ulcerative colitis: conventional corticosteroid therapy (MP) versus granulocytapheresis (GMA): a pilot study. Dig Liver Dis. 2007;39:430–434.

    Article  PubMed  CAS  Google Scholar 

  49. Muratov V, Lundahl J, Ulfgren AK, et al. Down-regulation of interferon-gamma parallels clinical response to selective leukocyte apheresis in patients with inflammatory bowel disease: a 12 month follow-up study. Int J Colorectal Dis. 2006;21:493–504.

    Article  PubMed  CAS  Google Scholar 

  50. Maiden L, Takeuchi K, Baur R, et al. Selective white cell apheresis reduces relapse rates in patients with IBD at significant risk of clinical relapse. Inflamm Bowel Dis. 2008;14:1413–1418.

    Article  PubMed  Google Scholar 

  51. Cohen RD. Treating ulcerative colitis without medications—”look mom, no drugs!”. Gastroenterology. 2005;128:235–236.

    Article  PubMed  Google Scholar 

  52. Schwartz D, Ferguson JR. Current pharmacologic treatment paradigms for inflammatory bowel disease and the potential role of granulocyte/monocyte apheresis. Curr Med Res Opin. 2007;23:2715–2728.

    Article  PubMed  CAS  Google Scholar 

  53. Abreu MT, Plevy S, Sands BE, Weinstein R. Selective leukocyte apheresis for the treatment of inflammatory bowel disease. J Clin Gastroenterol. 2007;41:874–888.

    Article  PubMed  Google Scholar 

  54. Sands BE, Sandborn WJ, Feagan B, et al. A randomized, double-blind, sham-controlled study of granulocyte/monocyte apheresis for active ulcerative colitis. Gastroenterology. 2008;135:400–409.

    Article  PubMed  CAS  Google Scholar 

  55. Suzuki Y, Yoshimura N, Fukuda K, Shirai K, Saito Y, Saniabadi AR. A retrospective search for predictors of clinical response to selective granulocyte and monocyte apheresis in patients with ulcerative colitis. Dig Dis Sci. 2006;51:2031–2038.

    Article  PubMed  Google Scholar 

  56. Hanai H, Watanabe F, Takeuchi K, et al. Leukocyte adsorptive apheresis for the treatment of active ulcerative colitis: a prospective, uncontrolled, pilot study. Clin Gastroenterol Hepatol. 2003;1:28–35.

    Article  PubMed  Google Scholar 

  57. Tanaka T, Okanobu H, Yoshimi S, et al. In patients with ulcerative colitis, adsorptive depletion of granulocytes and monocytes impacts mucosal level of neutrophils and clinically is most effective in steroid naive patients. Dig Liver Dis. 2008;40:731–736.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. K. Kurasawa of Dokkyo University for his generous support during this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuro Katsuno.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Takeda, Si., Sato, T., Katsuno, T. et al. Adsorptive Depletion of α4 Integrinhi- and CX3CR1hi-Expressing Proinflammatory Monocytes in Patients with Ulcerative Colitis. Dig Dis Sci 55, 1886–1895 (2010). https://doi.org/10.1007/s10620-009-0974-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-009-0974-2

Keywords

  • Ulcerative colitis
  • CD14+CD16+ monocytes
  • CD14hiCD16CCR2low monocytes
  • α4 Integrin
  • CX3CR1
  • Adsorptive depletion of myeloid leucocytes