Skip to main content

Advertisement

Log in

Detection of Duodenal Ulcer-Associated Genes in Rats

  • Original Paper
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

We assessed the expression of about 8,000 known or unknown genes in the preulcerogenic stages of cysteamine-induced duodenal ulceration in rats, in comparison with the toxic but nonulcerogen ethanolamine. The most prominent gene changes were confirmed by custom gene blots, reverse transcriptase polymerase chain reaction (RT-PCR), real-time PCR, radio-immunoassay, Western blot, or enzyme-linked immunosorbent assay (ELISA), and the levels of their expression in other gastrointestinal organs such as ileum and colon were identified by real-time PCR. The time-course study after cysteamine showed 40 genes with marked changes, belonging to cell surface antigens, transcription factors, DNA binding proteins, ion channels, transport proteins, cellular receptors, and expressed sequence tags (i.e., unknown genes). In comparison with ethanolamine, these 40 genes changed by cysteamine only may represent ulcer-associated genes, such as endothelin receptor B, endothelin 1, caspase 3, transcription factors egr-1, Sp1, the angiogenic growth factors vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF), and especially egr-1 and endothelin receptor B (ETRB) showed no changes in ileum and colon. Conclusions: (1) These data suggest that duodenal ulcerogenesis may require the interaction of several genes leading to endothelial and epithelial cell injury, mucosal erosion, and ulcer; (2) these new findings may offer a new approach to the identification of potential ulcerogenic genes and provide new insights into the molecular mechanisms of duodenal ulceration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stenzel-Poore MP, Stevens SL, Xiong Z, Lessov NS, Harrington CA, Mori M, Meller R, Rosenzweig HL, Tobar E, Shaw TE, Chu X, Simon RP (2003) Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states. Lancet 362:1028–1037

    Article  PubMed  CAS  Google Scholar 

  2. Louw JA (2006) Peptic ulcer disease. Curr Opin Gastroenterol 22:607–611

    Article  PubMed  Google Scholar 

  3. Selye H, Szabo S (1973) Experimental model for production of perforating duodenal ulcers by cysteamine in the rat. Nature 244:458–459

    Article  PubMed  CAS  Google Scholar 

  4. Szabo S, Selye H (1972) Duodenal ulcers produced by propionitrile in rats. Arch Pathol 93:390–391

    PubMed  CAS  Google Scholar 

  5. Szabo S, Khomenko T, Gombos Z, Deng XM, Jadus MR, Yoshida M (2000) Transcription factors and growth factors in ulcer healing. Aliment Pharmacol Ther 14(Suppl 1):33–43

    Article  PubMed  CAS  Google Scholar 

  6. Szabo S, Reynolds ES, Unger SH (1982) Structure-activity relations between alkyl nucleophilic chemicals causing duodenal ulcer and adrenocortical necrosis. J Pharm Exp Ther 223:68–76

    CAS  Google Scholar 

  7. Giampaolo C, Gray AT, Olshen RA, Szabo S (1991) Predicting chemically-induced duodenal ulcer and adrenal necrosis with classification trees. Proc Natl Acad Sci USA 88:6298–6302

    Article  PubMed  CAS  Google Scholar 

  8. Deng XM, Szabo S, Jadus MR, Gombos Z, Khomenko T, Yoshida M, Mutsumoto H, Ishikawa H (2001) Detection of potentially ulcerogenic genes in duodenal ulceration in rats. Gastroenterology 120:A32

    Article  Google Scholar 

  9. Deng XM, Szabo S, Jadus MR, Khomenko T, Yoshida M, Mutsumoto H, Ishikawa H (2002) Gene expression changes in the early stage of duodenal ulceration in rats. FASEB J 16:A199–A200

    Google Scholar 

  10. Deng XM, Khomenko T, Jadus MR, Szabo S (2003) Identification of prominent genes involved in the induction and healing of experimental duodenal ulcers. Gastroenterology 124:A455

    Article  Google Scholar 

  11. Khomenko T, Szabo S, Deng XM, Jadus MR, Ishikawa H, Osapay K, Sandor Zs, Chen LC (2006) Suppression of early growth response factor-1 with egr-1 antisense oligodeoxynucleotide aggravates experimental duodenal ulcers. Am J Physiol Gastrointest Liver Physiol 290:G1211–G1218

    Article  PubMed  CAS  Google Scholar 

  12. Szabo S, Vincze A, Sandor Z, Jadus M, Gombos Z, Pedram A, Levin E, Hagar J, Iaquinto G (1998) Vascular approach to gastroduodenal ulceration: new studies with endothelins and VEGF. Dig Dis Sci 43:40S–45S

    PubMed  CAS  Google Scholar 

  13. Cattaruzza M, Dimigen C, Ehrenreich H, Hecker M (2000) Stretch-induced endothelin B receptor-mediated apoptosis in vascular smooth muscle cells. FASEB J 14:991–998

    PubMed  CAS  Google Scholar 

  14. Nakahashi T, Fukuo K, Nishimaki H, Hata S, Shimizu M, Suhara T, Takimoto M, Morimoto S, Ogihara T (1998) Endothelin-l enhances nitric oxide-induced cell death in cultured vascular smooth-muscle cells. J Cardiovasc Phamacol 31:S351–S353

    Article  CAS  Google Scholar 

  15. Shubeita HE, McDonough PM, Harris AN, Knowlton KU, Glembotski CC, Brown JH, Chien KR (1990) Endothelin induction of inositol phospholipid hydrolysis, sarcomere assembly and cardiac gene expression in ventricular myocytes. J BioI Chem 265:20555–20562

    PubMed  CAS  Google Scholar 

  16. Neyses L, Nouskas J, Vetter H (1991) Inhibition of endothelin-l induced myocardial protein synthesis by an antisense oligonucleotide against the early growth response gene 1. Biochem Biophys Res Comm 181:22–27

    Article  PubMed  CAS  Google Scholar 

  17. Ito H, Hirata Y, Hiroe M, Tsujino M, Adachi S, Takamoto T, Nitta M, Taniguchi K, Marumo F (1991) Endothelin-l induces hypertrophy with enhanced expression of muscle-specific genes in cultured neonatal rat cardiomyocytes. Circ Res 69:209–215

    PubMed  CAS  Google Scholar 

  18. Khomenko T, Szabo S, Yoshida M., Deng XM, Matsumoto H (2000) Activition of caspase-3 by cysteamine: possible mechanism of the CDK inhibitor p21 cleavage in duodenal ulceration. Gastroenterology 118:A24

    Article  Google Scholar 

  19. Biesiada E, Razandi M, Levin ER (1996) Egr-l activates basic fibroblast growth factor transcription. Mechanistic implications for astrocyte proliferation. J BioI Chem 271:18576–18581

    Article  PubMed  CAS  Google Scholar 

  20. Vidal F, Aragones J, Alfranca A, de Landazuri MO (2000) Up-regulation of vascular endothelial growth factor receptor Flt-l after endothelial denudation: role of transcription factor Egr-1. Blood 95:3387–3395

    PubMed  CAS  Google Scholar 

  21. Hunter T, Pines J (1994) Cyclins and Cancer II. cyclin D and CDK inhibitors come of age. Cell 79:573–582

    Article  PubMed  CAS  Google Scholar 

  22. Serrano M, Hannon GJ, Beach D (1993) A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366:704–707

    Article  PubMed  CAS  Google Scholar 

  23. Hannon GJ, Beach D (1994) p15INK4B is a potential effector of TGF-β induced cell cycle arrest. Nature 371:257–261

    Article  PubMed  CAS  Google Scholar 

  24. Guan KL, Jenkins CW, Li Y, Nichols MA, Wu X, O’Keefe CL, Matera AG, Xiong Y (1994) Growth suppression by p18, a p16 and p14 related CDK6 inhibitor, correlates with wild-type Rb function. Genes Dev 8:2939–2952

    Article  PubMed  CAS  Google Scholar 

  25. Hirai H, Roussel MF, Kato J, Ashmun RA, Sherr CJ (1995) Novel INK4 proteins p19 and p18, are specific inhibitors of the cyclin d-dependent kinase CDK4 and CDK6. Mol Cell Biol 15:2672–2681

    PubMed  CAS  Google Scholar 

  26. Harper JW, Adami G, Wei N, Keyomarsi K, Elledge SJ (1993) The p21kd Cdk interacting protein Cip 1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816

    Article  PubMed  CAS  Google Scholar 

  27. Toyoshima H, Hunter T (1994) p27, a novel inhibitor of G I cyclin Cdk protein kinase activity, is related to p21. Cell 78:67–74

    Article  PubMed  CAS  Google Scholar 

  28. Lee M, Reynisdottir I, Massague J (1995) Cloning of p57Kipl, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev 9:639–649

    Article  PubMed  CAS  Google Scholar 

  29. Tsujie M, Yamamoto H, Tomita N, Sugita Y, Ohue M, Sakita I, Tamaki Y, Sekimoto M, Doki Y, Inoue M, Matsuura N, Monden T, Shiozaki H, Monden M (2000) Expression of tumor suppressor gene p16INK4 products in primary gastric cancer. Oncology 58:126136

    Article  PubMed  CAS  Google Scholar 

  30. Butler A, Wei A, Baker K, Salkoff L (1989) A family of putative potassium channel genes in Drosophila. Science 243:943–947

    Article  PubMed  CAS  Google Scholar 

  31. Catterall WA (1988) Structure and function of voltage-sensitive ion channels. Science 42:50–61

    Article  Google Scholar 

  32. Rudy B (1988) Diversity and ubiquity of K channels. Neuroscience 25:129–749

    Article  Google Scholar 

  33. Frech GC, Van Dongen AM, Schuster G, Brown AM, Joho RH (1989) A novel potassium channel with delayed rectifier properties isolated from rat brain by expression cloning. Nature 340:642–645

    Article  PubMed  CAS  Google Scholar 

  34. Hu S, Wang S, Gibson J, Gilberison TA (1998) Inhibition of delayed rectifer K+ channels by dexfenfluramine (redux). J Pharm Exp Ther 287:480–486

    CAS  Google Scholar 

  35. Gallagher GT, Szabo S (1984) Secretory changes associated with chemically-induced duodenal ulceration: simultaneous measurements of acid, pepsin, base and pancreatic enzymes in rats with chronic gastric fistula. Digestion 29:73–84

    Article  PubMed  CAS  Google Scholar 

  36. Tan S, Hooi SC (2000) Syncollin is differentially expressed in rat proximal small intestine and regulated by feeding behavior. Am J Physiol Oastrointest Liver Physiol 278:0308–0320

    Google Scholar 

  37. Szabo S (1979) Dopamine disorder in duodenal ulceration. Lancet 2:880–882

    Article  PubMed  CAS  Google Scholar 

  38. Hernandez DE, Walker CH, Valenzuela JE, Mason OA (1989) Increased dopamine receptor binding in duodenal mucosa of duodenal ulcer patients. Dig Dis Sci 34:543–547

    Article  PubMed  CAS  Google Scholar 

  39. Szabo S, Deng X, Khomenko T, Yoshida M, Jadus MR, Sandor Zs, Gombos Z, Matsumoto H (2001) Gene expression and gene therapy in experimental duodenal ulceration. J Physiol Paris 95:325–335.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandor Szabo.

Additional information

The present study was supported by a Department of Veterans Affairs, Veterans Health Administration Merit Review grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, X., Szabo, S., Khomenko, T. et al. Detection of Duodenal Ulcer-Associated Genes in Rats. Dig Dis Sci 53, 375–384 (2008). https://doi.org/10.1007/s10620-007-9890-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-007-9890-5

Keywords

Navigation