Skip to main content

Reduction of Dendritic Cells by Granulocyte and Monocyte Adsorption Apheresis in Patients with Ulcerative Colitis

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The influence of the granulocyte/monocyte apheresis (GMCAP) on cell populations participating in mechanisms of tolerance, e.g. dendritic cells (DCs), is still not very clear. In a first step, we aimed to investigate changes in the DC population of patients suffering from ulcerative colitis (UC) (n = 13) compared to healthy subjects (n = 9). In a second step, we studied the changes in peripheral DCs in a small group of patients with active UC before and after Adacolumn apheresis (n = 7). For this purpose, plasmacytoid and myeloid DCs and their maturation markers CD40, CD80, and CD86 were measured using four-color flow cytometry in the peripheral blood. After apheresis, and in acute flare-ups, we identified a significantly lower number of lymphocytes, plasmacytoid, and myeloid DCs. In conclusion, the additional removal of peripheral DCs by GMCAP, which otherwise would contribute to the inflammatory process in the gut, may lead to a higher tolerogeneic status towards luminal antigens.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Sawada K, Kusugami K, Suzuki Y, Bamba T, Munakata A, Hibi T, Shimoyama T (2005) Leukocytapheresis in ulcerative colitis: results of a multicenter double-blind prospective case-control study with sham apheresis as placebo treatment. Am J Gastroenterol 100:1362–1369

    PubMed  Article  Google Scholar 

  2. Hanai H, Watanabe F, Yamada M, Sato Y, Takeuchi K, Iida T, Tozawa K, Tanaka T, Maruyama Y, Matsushita I, Iwaoka Y, Kikuch K, Saniabadi AR (2004) Adsorptive granulocyte and monocyte apheresis versus prednisolone in patients with corticosteroid-dependent moderately severe ulcerative colitis. Digestion 70:36–44

    PubMed  Article  CAS  Google Scholar 

  3. Kusaka T, Fukunaga K, Ohnishi K, Kosaka T, Tomita T, Yokoyama Y, Sawada K, Fukuda Y, Miwa H, Matsumoto T (2004) Adsorptive Monocyte-granulocytapheresis (M-GCAP) for refractory Crohn’s disease. J Clin Apher 19:168–173

    PubMed  Article  Google Scholar 

  4. Soerensen H, Schneidewind-Mueller JM, Lange D, Kashiwagi N, Franz M, Yokoyama T, Ramlow W (2006) Pilot clinical study of Adacolumn cytapheresis in patients with systemic lupus erythematosus. Rheumatol Int 26:409–415

    PubMed  Article  Google Scholar 

  5. Mori S, Nagashima M, Yoshida K, Yoshino K, Aoki M, Kawana S, Hirata I, Saniabadi A, Yoshino S (2004) Granulocyte adsorptive apheresis for leg ulcers complicated by rheumatoid arthritis: a report on three successfully treated cases. Int J Dermatol 43:732–735

    PubMed  Article  Google Scholar 

  6. Pineda AA (2006) Developments in the apheresis procedure for the treatment of inflammatory bowel disease. Inflamm Bowel Dis 12(Suppl 1):S10–S14

    PubMed  Article  Google Scholar 

  7. Emmrich J, Petermann S, Nowak D, Beutner I, Brock P, Klingel R, Mausfeld-Lafdhiya P, Liebe S, Ramlow W (2007) Leukocytapheresis (LCAP) in the management of chronic active ulcerative colitis-results of a randomized pilot trial. Dig Dis Sci 52:2044–2053

    PubMed  Article  CAS  Google Scholar 

  8. Shimoyama T, Sawada K, Hiwatashi N, Sawada T, Matsueda K, Munakata A, Asakura H, Tanaka T, Kasukawa R, Kimura K, Suzuki Y, Nagamachi Y, Muto T, Nagawa H, Iizuka B, Baba S, Nasu M, Kataoka T, Kashiwagi N, Saniabadi AR (2001) Safety and efficacy of granulocyte and monocyte adsorption apheresis in patients with active ulcerative colitis: a multicenter study. J Clin Apher 16:1–9

    PubMed  Article  CAS  Google Scholar 

  9. Ramlow W, Emmrich J, Ahrenholz P, Sparmann G, Kashiwagi N, Franz M, Yokoyama T, Yoshikawa T (2005) In vitro and in vivo evaluation of Adacolumn cytapheresis in healthy subjects. J Clin Apher 20:72–80

    PubMed  Article  Google Scholar 

  10. Hiraishi K, Takeda Y, Shiobara N, Shibusawa H, Jimma F, Kashiwagi N, Saniabadi AR, Adachi M (2003) Studies on the mechanisms of leukocyte adhesion to cellulose acetate beads: an in vitro model to assess the efficacy of cellulose acetate carrier-based granulocyte and monocyte adsorptive apheresis. Ther Apher Dial 7:334–340

    PubMed  Article  Google Scholar 

  11. Kashiwagi N, Sugimura K, Koiwai H, Yamamoto H, Yoshikawa T, Saniabadi AR, Adachi M, Shimoyama T (2002) Immunomodulatory effects of granulocyte and monocyte adsorption apheresis as a treatment for patients with ulcerative colitis. Dig Dis Sci 47:1334–1341

    PubMed  Article  CAS  Google Scholar 

  12. Niess JH, Reinecker HC (2006) Dendritic cells in the recognition of intestinal microbiota. Cell Microbiol 8:558–564

    PubMed  Article  CAS  Google Scholar 

  13. Karlis J, Penttila I, Tran TB, Jones B, Nobbs S, Zola H, Flesch IE (2004) Characterization of colonic and mesenteric lymph node dendritic cell subpopulations in a murine adoptive transfer model of inflammatory bowel disease. Inflamm Bowel Dis Nov 10:834–847

    Article  Google Scholar 

  14. Cruickshank SM, English NR, Felsburg PJ, Carding SR (2005) Characterization of colonic dendritic cells in normal and colitic mice. World J Gastroenterol 11:6338–6347

    PubMed  Google Scholar 

  15. Drakes ML, Blanchard TG, Czinn SJ (2005) Colon lamina propria dendritic cells induce a proinflammatory cytokine response in lamina propria T cells in the SCID mouse model of colitis. J Leukoc Biol 78:1291–1300

    PubMed  Article  CAS  Google Scholar 

  16. Baumgart DC, Metzke D, Schmitz J, Scheffold A, Sturm A, Wiedenmann B, Dignass AU (2005) Patients with active inflammatory bowel disease lack immature peripheral blood plasmacytoid and myeloid dendritic cells. Gut 54:228–236

    PubMed  Article  CAS  Google Scholar 

  17. Vuckovic S, Florin TH, Khalil D, Zhang MF, Patel K, Hamilton I, Hart DN (2001) CD40 and CD86 upregulation with divergent CMRF44 expression on blood dendritic cells in inflammatory bowel diseases. Am J Gastroenterol 96:2946–2956

    PubMed  Article  CAS  Google Scholar 

  18. Middel P, Raddatz D, Gunawan B, Haller F, Radzun HJ (2006) Increased number of mature dendritic cells in Crohn’s disease: evidence for a chemokine mediated retention mechanism. Gut 55:220–227

    PubMed  Article  CAS  Google Scholar 

  19. Ikeda Y, Akbar F, Matsui H, Onji M (2001) Characterization of antigen-presenting dendritic cells in the peripheral blood and colonic mucosa of patients with ulcerative colitis. Eur J Gastroenterol Hepatol 13:841–850

    PubMed  Article  CAS  Google Scholar 

  20. Ikeda Y, Akbar SM, Matsui H, Murakami H, Onji M (2003) Depletion and decreased function of antigen-presenting dendritic cells caused by lymphocytapheresis in ulcerative colitis. Dis Colon Rectum 46:521–528

    PubMed  Article  Google Scholar 

  21. Ohara M, Saniabadi AR, Kokuma S, Hirata I, Adachi M, Agishi T, Kasukawa R (1997) Granulocytapheresis in the treatment of patients with rheumatoid arthritis. Artif Organs 21:989–994

    PubMed  CAS  Google Scholar 

  22. Kashiwagi N, Hirata I, Kasukawa R (1998) A role for granulocyte and monocyte apheresis in the treatment of rheumatoid arthritis. Ther Apher 2:134–141

    PubMed  Article  CAS  Google Scholar 

  23. Steinman RM, Hemmi H (2006) Dendritic cells: translating innate to adaptive immunity. Curr Top Microbiol Immunol 311:17–58

    PubMed  Article  CAS  Google Scholar 

  24. Sallusto F, Lanzavecchia A (1999) Mobilizing dendritic cells for tolerance, priming, and chronic inflammation. J Exp Med 189:611–614

    PubMed  Article  CAS  Google Scholar 

  25. Stasiolek M, Bayas A, Kruse N, Wieczarkowiecz A, Toyka KV, Gold R, Selmaj K (2006) Impaired maturation and altered regulatory function of plasmacytoid dendritic cells in multiple sclerosis. Brain 129:1293–1305

    PubMed  Article  Google Scholar 

  26. Kramer M, Netea MG, de Jong DJ, Kullberg BJ, Adema GJ (2006) Impaired dendritic cell function in Crohn’s disease patients with NOD2 3020insC mutation. J Leukoc Biol 79:860–866

    PubMed  Article  CAS  Google Scholar 

  27. Hussein MR, Hamed SA, Mostafa MG, Abu-Dief EE, Kamel NF, Kandil MR (2006) The effects of glucocorticoid therapy on the inflammatory and dendritic cells in muscular dystrophies. Int J Exp Pathol 87:451–461

    PubMed  Article  CAS  Google Scholar 

  28. Rozkova D, Horvath R, Bartunkova J, Spisek R (2006) Glucocorticoids severely impair differentiation and antigen presenting function of dendritic cells despite upregulation of Toll-like receptors. Clin Immunol 120:260–271

    PubMed  Article  CAS  Google Scholar 

  29. Takeda Y, Hiraishi K, Takeda H, Shiobara N, Shibusawa H, Saniabadi AR, Adachi M, Kawata S (2003) Cellulose acetate beads induce release of interleukin-1 receptor antagonist, but not tumour necrosis factor-alpha or interleukin-1beta in human peripheral blood. Inflamm Res 52:287–290

    PubMed  CAS  Google Scholar 

  30. Hanai H, Iida T, Yamada M, Sato Y, Takeuchi K, Tanaka T, Kondo K, Kikuyama M, Maruyama Y, Iwaoka Y, Nakamura A, Hirayama K, Saniabadi AR, Watanabe F (2006) Effects of Adacolumn selective leukocytapheresis on plasma cytokines during active disease in patients with active ulcerative colitis. World J Gastroenterol 12:3393–3399

    PubMed  CAS  Google Scholar 

  31. D’Arrigo C, Candal-Couto JJ, Greer M, Veale DJ, Woof JM (1995) Human neutrophil Fc receptor-mediated adhesion under flow: a hollow fibre model of intravascular arrest. Clin Exp Immunol 100:173–179

    PubMed  CAS  Article  Google Scholar 

  32. Woelbing F, Kostka SL, Moelle K, Belkaid Y, Sunderkoetter C, Verbeek S, Waisman A, Nigg AP, Knop J, Udey MC, von Stebut E (2006) Uptake of Leishmania major by dendritic cells is mediated by Fcgamma receptors and facilitates acquisition of protective immunity. J Exp Med 203:177–188

    PubMed  Article  CAS  Google Scholar 

  33. Ben Nasr A, Haithcoat J, Masterson JE, Gunn JS, Eaves-Pyles T, Klimpel GR (2006) Critical role for serum opsonins and complement receptors CR3 (CD11b/CD18) and CR4 (CD11c/CD18) in phagocytosis of Francisella tularensis by human dendritic cells (DC): uptake of Francisella leads to activation of immature DC and intracellular survival of the bacteria. J Leukoc Biol 80:774–786

    PubMed  Article  CAS  Google Scholar 

  34. Yokoyama Y, Fukunaga K, Fukuda Y, Tozawa K, Kamikozuru K, Ohnishi K, Kusaka T, Kosaka T, Hida N, Ohda Y, Miwa H, Matsumoto T (2007) Demonstration of low-regulatory CD25High+ CD4+ and high-pro-inflammatory CD28 CD4+ T-Cell subsets in patients with ulcerative colitis: modified by selective granulocyte and monocyte adsorption apheresis. Dig Dis Sci 52:2725–2731

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

We thank Anja Ramlow, Annett Bieber, and Karin Flägel from the nursing staff of the Apheresis Center and Katja Bergmann from the Division of Gastroenterology for excellent technical support. This work was supported by Otsuka Pharmaceutical Co., Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grit Waitz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Waitz, G., Petermann, S., Liebe, S. et al. Reduction of Dendritic Cells by Granulocyte and Monocyte Adsorption Apheresis in Patients with Ulcerative Colitis. Dig Dis Sci 53, 2507–2515 (2008). https://doi.org/10.1007/s10620-007-0168-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-007-0168-8

Keywords

  • Granulocyte/monocyte apheresis
  • Dendritic cells
  • Ulcerative colitis