Skip to main content

Advertisement

Log in

The PMAIP1 Gene on Chromosome 18 is a Candidate Tumor Suppressor Gene in Human Pancreatic Cancer

  • Original Paper
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Frequent loss of heterozygosity on the long arm of chromosome 18 is observed in pancreatic cancer. Previous studies suggested the existence of one or more tumor-suppressor genes other than SMAD4 on chromosome 18. To identify the candidate tumor-suppressor gene(s), we compared gene expression by cDNA microarray analyses using a pancreatic cancer cell line Panc-1 and its hybrid cell lines showing suppressed cell growth after introduction of one normal copy of chromosome 18. The microarray analyses identified 38 genes on chromosome 18 that showed differential expressional levels. Among these genes, phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1/APR/NOXA) was identified as one of the candidates for tumor suppressor. Expression vector-mediated introduction of PMAIP1 suppressed cell proliferation, and RNAi-mediated knockdown of PMAIP1 induced recovery of cell growth. These results suggest that PMAIP1 may play an important role in the progression of pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Parker SL, Tong T, Bolden S, Wing PA (1997) Cancer statistics. CA Cancer J Clin 47:5–27

    Article  PubMed  CAS  Google Scholar 

  2. Trede M, Schwall G, Saeger HD (1990) Survival after pancreatoduodenectomy. Ann Surg 211:447–458

    Article  PubMed  CAS  Google Scholar 

  3. Livingston EH, Welton ML, Reber HA (1991) The United States’ experience with surgery for pancreatic cancer. Int J Pancreatol 9:153–157

    PubMed  CAS  Google Scholar 

  4. Furukawa T, Sunamura M, Horii A (2006) Molecular mechanisms of pancreatic carcinogenesis. Cancer Sci 97:1–7

    Article  PubMed  CAS  Google Scholar 

  5. Griffin CA, Hruban RH, Morsberger LA, Ellingham T, Long PP, Jaffee EM, Hauda KM, Bohlander SK, Yeo CJ (1995) Consistent chromosome abnormalities in adenocarcinoma of the pancreas. Cancer Res 55:2394–2399

    PubMed  CAS  Google Scholar 

  6. Kimura M, Furukawa T, Sunamura M, Takeda K, Matsuno S, Horii A (1996) Detailed deletion mapping on chromosome arm 12q in human pancreatic adenocarcinoma: identification of a 1-cM region of common allelic loss. Genes Chromosomes Cancer 17:88–93

    Article  PubMed  CAS  Google Scholar 

  7. Fukushige S, Waldman FM, Kimura M, Abe T, Furukawa T, Sunamura M, Kobari M, Horii A (1997) Frequent gain of copy number on the long arm of chromosome 20 in human pancreatic adenocarcinoma. Genes Chromosomes Cancer 19:161–169

    Article  PubMed  CAS  Google Scholar 

  8. Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M (1988) Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 53:549–554

    Article  PubMed  CAS  Google Scholar 

  9. Barton CM, Staddon SL, Hughes CM, Hall PA, O’Sullivan C, Klöppel G, Theis B, Russell RCG, Neoptolemos J, Williamson RCN, Lane DP, Lemoine NR (1991) Abnormalities of the p53 tumour suppressor gene in human pancreatic cancer. Br J Cancer 64:1076–1082

    PubMed  CAS  Google Scholar 

  10. Caldas C, Hahn SA, da Costa LT, Redson MS, Schutte M, Seymour AB, Weinstein CL, Hruban RH, Yeo CJ, Kem SE (1994) Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat Genet 8:27–32

    Article  PubMed  CAS  Google Scholar 

  11. Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, Rozenblum E, Weinstein CL, Fischer A, Yeo CJ, Hruban RH, Kern SE (1996) DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271:350–353

    Article  PubMed  CAS  Google Scholar 

  12. Yatsuoka T, Sunamura M, Furukawa T, Fukushige S, Yokoyama T, Inoue H, Shibuya K, Takeda K, Matsuno S, Horii A (2000) Association of poor prognosis with loss of 12q, 17p, and 18q, and concordant loss of 6q/17p and 12q/18q in human pancreatic ductal adenocarcinoma. Am J Gastroenterol 95:2080–2085

    Article  PubMed  CAS  Google Scholar 

  13. Fukushige S, Furukawa T, Satoh K, Sunamura M, Kobari M, Koizumi M, Horii A (1998) Loss of chromosome 18q is an early event in pancreatic ductal tumorigenesis. Cancer Res 58:4222–4226

    PubMed  CAS  Google Scholar 

  14. Inoue H, Furukawa T, Sunamura M, Takeda K, Matsuno S, Horii A (2001) Exclusion of SMAD4 mutation as an early genetic change in human pancreatic ductal tumorigenesis. Genes Chromosomes Cancer 31:295–299

    Article  PubMed  CAS  Google Scholar 

  15. Schwarte-Waldhoff I, Volpert OV, Bouck NP, Sipos B, Hahn SA, Klein-Scory S, Luttges J, Kloppel G, Graeven U, Eilert-Micus C, Hintelmann A, Schmiegel W (2000) Smad4/DPC4-mediated tumor suppression through suppression of angiogenesis. Proc Natl Acad Sci USA 97:9624–9629

    Article  PubMed  CAS  Google Scholar 

  16. Duda DG, Sunamura M, Lefter LP, Furukawa T, Yokoyama T, Yatsuoka T, Abe T, Inoue H, Motoi F, Egawa S, Matsuno S, Horii A (2003) Restoration of SMAD4 by gene therapy reverses the invasive phenotype in pancreatic adenocarcinoma cells. Oncogene 22:6857–6864

    Article  PubMed  CAS  Google Scholar 

  17. Lefter LP, Furukawa T, Sunamura M, Duda DG, Takeda K, Kotobuki N, Oshimura M, Matsuno S, Horii A (2002) Suppression of the tumorigenic phenotype by chromosome 18 transfer into pancreatic cancer cell lines. Genes Chromosomes Cancer 34:234–242

    Article  PubMed  CAS  Google Scholar 

  18. Tanaka K, Oshimura M, Kikuchi R, Seki M, Hayashi T, Miyaki M (1991) Suppression of tumorigenicity in human colon carcinoma cells by introduction of normal chromosome 5 or 18. Nature 349:340–342

    Article  PubMed  CAS  Google Scholar 

  19. Padalecki SS, Johnson-Pais TL, Killary AM, Leach RJ (2001) Chromosome 18 suppresses the tumorigenicity of prostate cancer cells. Genes Chromosomes Cancer 30:221–229

    Article  PubMed  CAS  Google Scholar 

  20. Sun C, Yamato T, Furukawa T, Ohnishi Y, Kijima H, Horii A (2001) Characterization of the mutations of the K-ras, p53, p16, and SMAD4 genes in 15 human pancreatic cancer cell lines. Oncol Rep 8:89–92

    PubMed  CAS  Google Scholar 

  21. Ishida M, Sunamura M, Furukawa T, Akada M, Fujimura H, Shibuya E, Egawa S, Unno M, Horii A (2007) Elucidation of the relationship of BNIP3 expression to gemcitabine chemosensitivity and prognosis. World J Gastroenterol 13:4593–4597

    PubMed  CAS  Google Scholar 

  22. van Golen KL, Wu ZF, Qiao XT, Bao L, Merajver SD (2000) RhoC GTPase, a novel transforming oncogene for human mammary epithelial cells that partially recapitulates the inflammatory breast cancer phenotype. Cancer Res 60:5832–5838

    PubMed  Google Scholar 

  23. Hata T, Furukawa T, Sunamura M, Egawa S, Motoi F, Ohmura N, Marumoto T, Saya H, Horii A (2005) RNA interference targeting aurora kinase A suppresses tumor growth and enhances the taxane chemosensitivity in human pancreatic cancer cells. Cancer Res 65:2899–2905

    Article  PubMed  CAS  Google Scholar 

  24. Furukawa T, Kanai N, Shiwaku HO, Soga N, Uehara A, Horii A (2006) AURKA is one of the downstream targets of MAPK1/ERK2 in pancreatic cancer. Oncogene 25:4831–4839

    Article  PubMed  CAS  Google Scholar 

  25. Yamanaka S, Sunamura M, Furukawa T, Sun L, Lefter LP, Abe T, Yatsuoka T, Fujimura H, Shibuya E, Kotobuki N, Oshimura M, Sakurada A, Sato M, Kondo T, Matsuno S, Horii A (2004) Chromosome 12, frequently deleted in human pancreatic cancer, may encode a tumor suppressor gene that suppresses angiogenesis. Lab Invest 84:1339–1351

    Article  PubMed  CAS  Google Scholar 

  26. Tanaka K, Yanoshita R, Konishi M, Oshimura M, Maeda Y, Mori T, Miyaki M (1993) Suppression of tumorigenicity in human colon carcinoma cells by introduction of normal chromosome 1p36 region. Oncogene 8:2253–2258

    PubMed  CAS  Google Scholar 

  27. Kugoh H, Nakamoto H, Inoue J, Funaki K, Barrett JC, Oshimura M (2002) Multiple human chromosomes carrying tumor-suppressor functions for the mouse melanoma cell line B16F10, identified by microcell-mediated chromosome transfer. Mol Carcinog 35:148–156

    Article  PubMed  CAS  Google Scholar 

  28. Matsuura S, Tauchi H, Nakamura A, Kondo N, Sakamoto S, Endo S, Smeets D, Solder B, Belohradsky BH, Der Kaloustian VM, Oshimura M, Isomura M, Nakamura Y, Komatsu K (1998) Positional cloning of the gene for Nijmegen breakage syndrome. Nat Genet 19:179–181

    Article  PubMed  CAS  Google Scholar 

  29. Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T, Tanaka N (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288:1053–1058

    Article  PubMed  CAS  Google Scholar 

  30. Seo YW, Shin JN, Ko KH, Cha JH, Park JY, Lee BR, Yun CW, Kim YM, Seol DW, Kim DW, Yin XM, Kim TH (2003) The molecular mechanism of Noxa-induced mitochondrial dysfunction in p53-mediated death. J Biol Chem 278:48292–48299

    Article  PubMed  CAS  Google Scholar 

  31. Schuler M, Maurer U, Goldstein JC, Breitenbucher F, Hoffarth S, Waterhouse NJ, Green DR (2003) p53 triggers apoptosis in oncogene-expressing fibroblasts by the induction of Noxa and mitochondrial Bax translocation. Cell Death Differ 10:451–460

    Article  PubMed  CAS  Google Scholar 

  32. Villunger A, Michalak EM, Coultas L, Mullauer F, Bock G, Ausserlechner MJ, Adams JP, Strasser A (2003) p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 302:1036–1038

    Article  PubMed  CAS  Google Scholar 

  33. Kim JY, Ahn HJ, Ryu JH, Suk K, Park JH (2004) BH3-only protein Noxa is a mediator of hypoxic cell death induced by hypoxia-inducible factor 1alpha. J Exp Med 199:113–124

    Article  PubMed  CAS  Google Scholar 

  34. Porta C, Hadj-Slimane R, Nejmeddine M, Pampin M, Tovey MG, Espert L, Alvarez S, Chelbi-Alix MK (2005) Interferons alpha and gamma induce p53-dependent and p53-independent apoptosis, respectively. Oncogene 24:605–615

    Article  PubMed  CAS  Google Scholar 

  35. Sun Y, Leaman DW (2005) Involvement of Noxa in cellular apoptotic responses to interferon, double-stranded RNA, and virus infection. J Biol Chem 280:15561–15568

    Article  PubMed  CAS  Google Scholar 

  36. Sasaki T, Sasahira T, Shimura H, Ikeda S, Kuniyasu H (2004) Effect of human Noxa on irinotecan-induced apoptosis in human gastric carcinoma cell lines. Hepatogastroenterology 51:912–915

    PubMed  CAS  Google Scholar 

  37. Qin JZ, Ziffra J, Stennett L, Bodner B, Bonish BK, Chaturvedi V, Bennett F, Pollock PM, Trent JM, Hendrix MJ, Rizzo P, Miele L, Nickoloff BJ (2005) Proteasome inhibitors trigger NOXA-mediated apoptosis in melanoma and myeloma cells. Cancer Res 65:6282–6293

    Article  PubMed  CAS  Google Scholar 

  38. Fernandez Y, Verhaegen M, Miller TP, Rush JL, Steiner P, Opipari AW Jr, Lowe SW, Soengas MS (2005) Differential regulation of Noxa in normal melanocytes and melanoma cells by proteasome inhibition: therapeutic implications. Cancer Res 65:6294–6304

    Article  PubMed  CAS  Google Scholar 

  39. Perez-Galan P, Roue G, Villamor N, Montserrat E, Campo E, Colomer D (2006) The proteasome inhibitor bortezomib induces apoptosis in mantle-cell lymphoma through generation of ROS and Noxa activation independent of p53 status. Blood 107:257–264

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr B.L.S. Pierce (University of Maryland University College) for editorial work in the preparation of this manuscript. This work was supported in part by Grants-in-Aid and the 21st Century COE Program Special Research Grant from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and by a Grant-in-Aid for Cancer Research from the Ministry of Health, Labour and Welfare of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Horii.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(XLS 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishida, M., Sunamura, M., Furukawa, T. et al. The PMAIP1 Gene on Chromosome 18 is a Candidate Tumor Suppressor Gene in Human Pancreatic Cancer. Dig Dis Sci 53, 2576–2582 (2008). https://doi.org/10.1007/s10620-007-0154-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-007-0154-1

Keywords

Navigation