Rothman SS (1977) The digestive enzymes of the pancreas: a mixture of inconsistent proportions. Ann Rev Physiol 39:373–389
CAS
Article
Google Scholar
Schmitz J (2004) Maldigestion and malabsorption. In: Walker WA, Goulet O, Kleinman RE, Sherman PM, Shneider BL, Sanderson IR (eds) Pediatric Gastrointestinal Disease: Pathophysiology, Diagnosis, Management. Decker, Hamilton, Canada, pp 8–20
Google Scholar
Bohak Z (1969) Purification and characterization of chicken pepsinogen and chicken pepsin. J Biol Chem 244:4638–4648
PubMed
CAS
Google Scholar
Tabeling R, Gregory P, Kamphues J (1999) Studies on nutrient digestibilities (pre-caecal and total) in pancreatic duct ligated pigs and the effects of enzyme substitution. J Anim Physiol Anim Nutr 82:251–263
Article
Google Scholar
Gregory PC (1999) Growth and digestion in pancreatic duct ligated pigs. Effect of enzyme supplementation. In: Pierzynowski SG, Zabielski R (eds) Biology of the Pancreas in Growing Animals. Elsevier Science, New York, pp 381–393
Google Scholar
Farrell JJ (2002) Digestion and absorption of nutrients and vitamins. In: Feldman M, Friedman LS, Sleisenger MH (eds) Sleisenger & Fortran's Gastrointestinal and Liver Disease. Saunders, Philadelphia, pp 1715–1750
Google Scholar
Whitcomb DC (1999) Early trypsinogen activation in acute pancreatitis. Gastroenterology 116:770–773
CAS
Google Scholar
Whitcomb DC (2000) Genetic predispositions to acute and chronic pancreatitis. Med Clin North Am 84:531–547
PubMed
CAS
Article
Google Scholar
Ghelis C, Tempete-Gaillourdet M, Yon JM (1978) The folding of pancreatic elastase: independent domain refolding and inter-domain interaction. Biochem Biophys Res Commun 84:31–36
PubMed
CAS
Article
Google Scholar
Hubbard S, Eisenmenger F, Thornton (1994) Modeling studies of the change in conformation required for cleavage of limited proteolytic sites. Protein Sci 3:757–768
PubMed
CAS
Google Scholar
Rinderknecht H, Renner IG, Carmack C (1979) Trypsinogen variants in pancreatic juice of healthy volunteers, chronic alcoholics, and patients with pancreatitis and cancer of the pancreas. Gut 20:886–891
PubMed
CAS
Article
Google Scholar
Figarella C, Clemente F, Guy O (1969) On zymogens of the human pancreatic juice. FEBS Lett 3:351–353
PubMed
CAS
Article
Google Scholar
Scheele G, Bartelt D, Bieger W (1981) Characterization of human exocrine pancreatic proteins by two-dimensional isoelectric focusing/sodium dodecyl sulfate gel electrophoresis. Gastroenterology 80:461–473
PubMed
CAS
Google Scholar
Emi M, Nakamura Y, Ogawa M, Yamamoto T, Nishide T, Mori T, et al. (1986) Cloning, characterization and nucleotide sequences of two cDNAs encoding human pancreatic trypsinogens. Gene 41:305–310
PubMed
CAS
Article
Google Scholar
Rowen L, Koop BF, Hood L (1996) The complete 685-kilobase DNA sequence of the human beta T cell receptor locus. Science 272:1755–1762
PubMed
CAS
Article
Google Scholar
Chen J-M, Férec C (2004) Human trypsins. In: Earret AJ, Rawlings ND, Woessner JF (eds) Handbook of Proteolytic Enzymes. Elsevier, London, pp 1489–1493
Google Scholar
Rinderknecht H, Stace NH, Renner IG (1985) Effects of chronic alcohol abuse on exocrine pancreatic secretion in man. Dig Dis Sci 30:65–71
PubMed
CAS
Article
Google Scholar
Kukor Z, Tóth M, Sahin-Tóth M (2003) Human anionic trypsinogen. Eur J Biochem 270:2047–2058
PubMed
CAS
Article
Google Scholar
Liebermann J, Petersson U, Marks WH, Borgstrom A (1998) The ratio between mRNA's for anionic and cationic trypsinogens does not change during acute experimental pancreatitis. Pancreas 17:446
Google Scholar
Colomb E, Figarella C (1979) Comparative studies on the mechanism of activation of the two human trypsinogens. Biochem Biophys Acta 571:343–351
PubMed
CAS
Google Scholar
Rinderknecht H, Renner IG, Abramson SB, Carmack C (1984) Mesotrypsin: a new inhibitor-resistant protease from a zymogen in human pancreatic tissue and fluid. Gastroenterology 86:681–692
PubMed
CAS
Google Scholar
Nyaruhucha CN, Kito M, Fukuoka SI (1997) Identification and expression of the cDNA-encoding human mesotrypsin(ogen), an isoform of trypsin with inhibitor resistance. J Biol Chem 272:10573–10578
PubMed
CAS
Article
Google Scholar
Kitamoto Y, Yuan X, Wu Q, McCourt DW, Sadler JE (1994) Enterokinase, the initiator of intestinal digestion, is a mosaic protease composed of a distinctive assortment of domains. Proc Natl Acad Sci U S A 91:7588–7592
PubMed
CAS
Article
Google Scholar
Stroud RM, Kossiakoff AA, Chambers JL (1977) Mechanisms of zymogen activation. Annu Rev Biophys Bioeng 6:177–193
PubMed
CAS
Article
Google Scholar
Delaage M, Lazdunski M (1967) The binding of Ca2+ to trypsinogen and its relation to the mechanism of activation. Biochem Biophys Res Commun 28:390–394
PubMed
CAS
Article
Google Scholar
Bennett WS, Huber R (1984) Structural and functional aspects of domain motions in proteins. CRC Crit Rev Biochem 15:291–384
PubMed
CAS
Google Scholar
Kukor Z, Tóth M, Pal G, Sahin-Tóth M (2002) Human cationic trypsinogen. Arg(117) is the reactive site of an inhibitory surface loop that controls spontaneous zymogen activation. J Biol Chem 277:6111–6117
PubMed
CAS
Article
Google Scholar
Maroux S, Rovery M, Desnuelle P (1967) An autolyzed and still active form of bovine trypsin. Biochim Biophys Acta 140:377–380
PubMed
CAS
Google Scholar
Schroeder DD, Shaw E (1968) Chromatography of trypsin and its derivatives. Characterization of a new active form of bovine trypsin. J Biol Chem 243:2943–2949
PubMed
CAS
Google Scholar
Rovery M (1988) Limited proteolysis in pancreatic chymotrypsinogens and trypsinogens. Biochimie 70:1131–1135
PubMed
CAS
Article
Google Scholar
Varallyay E, Pal G, Patthy A, Szilagyi L, Graf L (1998) Two mutations in rat trypsin confer resistance against autolysis. Biochem Biophys Res Commun 243:56–60
PubMed
CAS
Article
Google Scholar
Simon P, Weiss FU, Sahin-Tóth M, Parry M, Nayler O, Lenfers B, et al. (2001) Hereditary pancreatitis caused by a novel PRSS1 mutation (Arg-122→Cys) that alters autoactivation and autodegradation of cationic trypsinogen. J Biol Chem 21:21
Google Scholar
Whitcomb DC (2004) Advances in understanding the mechanisms leading to chronic pancreatitis. Nat Clin Pract Gastroenterol Hepatol 1:46–52
PubMed
Article
Google Scholar
Whitcomb DC (2004) Value of genetic testing in management of pancreatitis. Gut 53:1710–1717
PubMed
CAS
Article
Google Scholar
Figarella C, Miszczuk-Jamska B, Barrett AJ (1988) Possible lysosomal activation of pancreatic zymogens. Activation of both human trypsinogens by cathepsin B and spontaneous acid activation of human trypsinogen 1. Biol Chem Hoppe-Seylers 369(Suppl):293–298
CAS
Google Scholar
Lerch MM, Gorelick FS (2000) Early trypsinogen activation in acute pancreatitis. Med Clin North Am 84:549–563
PubMed
CAS
Article
Google Scholar
Kukor Z, Mayerle J, Kruger B, Toth M, Steed PM, Halangk W, Lerch MM, Sahin-Toth M (2002) Presence of cathepsin B in the human pancreatic secretory pathway and its role in trypsinogen activation during hereditary pancreatitis. J Biol Chem 277:21389–21396
PubMed
CAS
Article
Google Scholar
Klonowski-Stumpe H, Luthen R, Han B, Sata N, Haussinger D, Niederau C (1998) Inhibition of cathepsin B does not affect the intracellular activation of trypsinogen by cerulein hyperstimulation in isolated rat pancreatic acinar cells. Pancreas 16:96–101
PubMed
CAS
Article
Google Scholar
Halangk W, Lerch MM, Brandt-Nedelev B, Roth W, Ruthenbuerger M, Reinheckel T, et al. (2000) Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis. J Clin Invest 106:773–781
PubMed
CAS
Google Scholar
Mithofer K, Fernandez-Del Castillo C, Rattner DW, Warshaw AL (1998) Subcellular kinetics of early trypsinogen activation in acute rodent pancreatitis. Am J Physiol 274:G71–G79
PubMed
CAS
Google Scholar
Gorry MC, Gabbaizedeh D, Furey W, Gates LK Jr, Preston RA, Aston CE, et al. (1997) Mutations in the cationic trypsinogen gene are associated with recurrent acute and chronic pancreatitis. Gastroenterology 113:1063–1068
PubMed
CAS
Article
Google Scholar
Witt H, Luck W, Becker M (1999) A signal peptide cleavage site mutation in the cationic trypsinogen gene is strongly associated with chronic pancreatitis. Gastroenterology 117:7–10
PubMed
CAS
Article
Google Scholar
Whitcomb DC, Gorry MC, Preston RA, Furey W, Sossenheimer MJ, Ulrich CD, et al. (1996) Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene. Nat Genet 14:141–145
PubMed
CAS
Article
Google Scholar
Pfützer R, Myers E, Applebaum-Shapiro S, Finch R, Ellis I, Neoptolemos J, et al. (2002) Novel cationic trypsinogen (PRSS1) N29T and R122C mutations cause autosomal dominant hereditary pancreatitis. Gut 50:271–272
PubMed
Article
Google Scholar
Frick TW, Fernandez, del CC, Bimmler D, Warshaw AL (1997) Elevated calcium and activation of trypsinogen in rat pancreatic acini. Gut 41:339–343
PubMed
CAS
Article
Google Scholar
Sutton R, Criddle D, Raraty MG, Tepikin A, Neoptolemos JP, Petersen OH (2003) Signal transduction, calcium and acute pancreatitis. Pancreatology 3:497–505
PubMed
CAS
Article
Google Scholar
Bishop MD, Freedman SD, Zielenski J, Ahmed N, Dupuis A, Martin S, et al. (2005) The cystic fibrosis transmembrane conductance regulator gene and ion channel function in patients with idiopathic pancreatitis. Hum Genet 118:372–381
PubMed
CAS
Article
Google Scholar
Alazmi WM, Fogel EL, Schmidt S, Watkins JL, McHenry L, Sherman S, et al. (2006) ERCP findings in idiopathic pancreatitis: patients who are cystic fibrosis gene positive and negative. Gastrointest Endosc 63:234–239
PubMed
Article
Google Scholar
Whitcomb DC (2006) Clinical practice. Acute pancreatitis. N Engl J Med 354:2142–2150
PubMed
Article
Google Scholar
Ossovskaya VS, Bunnett NW (2004) Protease-activated receptors: contribution to physiology and disease. Physiol Rev 84:579–621
PubMed
CAS
Article
Google Scholar
Namkung W, Han W, Luo X, Muallem S, Cho KH, Kim KH, et al. (2004) Protease-activated receptor 2 exerts local protection and mediates some systemic complications in acute pancreatitis. Gastroenterology 126:1844–1859
PubMed
Article
CAS
Google Scholar
Vergnolle N (2005) Clinical relevance of proteinase activated receptors (pars) in the gut. Gut 54:867–874
Google Scholar
Hansen KK, Sherman PM, Cellars L, Andrade-Gordon P, Pan Z, Baruch A, et al. (2005) A major role for proteolytic activity and proteinase-activated receptor-2 in the pathogenesis of infectious colitis. Proc Natl Acad Sci USA 102:8363–8368
PubMed
CAS
Article
Google Scholar
Cottrell GS, Amadesi S, Grady EF, Bunnett NW (2004) Trypsin IV, a novel agonist of protease-activated receptors 2 and 4. J Biol Chem 279:13532–13539
PubMed
CAS
Article
Google Scholar
Layer P, Go VL, DiMagno EP (1986) Fate of pancreatic enzymes during small intestinal aboral transit in humans. Am J Physiol 251:G475–480
PubMed
CAS
Google Scholar
Carrere J, Figarella C, Guy O, Thouvenot JP (1986) Human pancreatic chymotrypsinogen A: a non-competitive enzyme immunoassay, and molecular forms in serum and amniotic fluid. Biochim Biophys Acta 883:46–53
PubMed
CAS
Google Scholar
Birktoft JJ, Blow DM, Henderson R, Steitz TA (1970) I. Serine proteinases. The structure of alpha-chymotrypsin. Philos Trans R Soc Lond B Biol Sci 257:67–76
PubMed
CAS
Article
Google Scholar
Kardos J, Bodi A, Zavodszky P, Venekei I, Graf L (1999) Disulfide-linked propeptides stabilize the structure of zymogen and mature pancreatic serine proteases. Biochemistry 38:12248–12257
PubMed
CAS
Article
Google Scholar
Appelt G, Schulze B, Rogos R, Kopperschlager G (1988) Analysis of human exocrine pancreatic proteins by means of pore gradient polyacrylamide gel electrophoresis. Biomed Biochim Acta 47:133–140
PubMed
CAS
Google Scholar
Tomita N, Izumoto Y, Horii A, Doi S, Yokouchi H, Ogawa M, et al. (1989) Molecular cloning and nucleotide sequence of human pancreatic prechymotrypsinogen cDNA. Biochem Biophys Res Commun 158:569–575
PubMed
CAS
Article
Google Scholar
Reseland JE, Larsen F, Solheim J, Eriksen JA, Hanssen LE, Prydz H (1997) A novel human chymotrypsin-like digestive enzyme. J Biol Chem 272:8099–8104
PubMed
CAS
Article
Google Scholar
Tomomura A, Akiyama M, Itoh H, Yoshino I, Tomomura M, Nishii Y, et al. (1996) Molecular cloning and expression of human caldecrin. FEBS Lett 386:26–28
PubMed
CAS
Article
Google Scholar
Yoshino-Yasuda I, Kobayashi K, Akiyama M, Itoh H, Tomomura A, Saheki T (1998) Caldecrin is a novel-type serine protease expressed in pancreas, but its homologue, elastase IV, is an artifact during cloning derived from caldecrin gene. J Biochem (Tokyo) 123:546–554
CAS
Google Scholar
Rosenbloom J (1984) Elastin: relation of protein and gene structure to disease. Lab Invest 51:605–623
PubMed
CAS
Google Scholar
Rose SD, MacDonald RJ (1997) Evolutionary silencing of the human elastase I gene (ELA1). Hum Mol Genet 6:897–903
PubMed
CAS
Article
Google Scholar
Kawashima I, Tani T, Shimoda K, Takiguchi Y (1987) Characterization of pancreatic elastase II cDNAs: two elastase II mRNAs are expressed in human pancreas. DNA 6:163–172
PubMed
CAS
Google Scholar
Walkowiak J, Herzig KH, Strzykala K, Przyslawski J, Krawczynski M (2002) Fecal elastase-1 is superior to fecal chymotrypsin in the assessment of pancreatic involvement in cystic fibrosis. Pediatrics 110:e7
PubMed
Article
Google Scholar
Gullo L, Ventrucci M, Tomassetti P, Migliori M, Pezzilli R (1999) Fecal elastase 1 determination in chronic pancreatitis. Dig Dis Sci 44:210–213
PubMed
CAS
Article
Google Scholar
Dominguez-Munoz JE, Hieronymus C, Sauerbruch T, Malfertheiner P (1995) Fecal elastase test: evaluation of a new noninvasive pancreatic function test. Am J Gastroenterol 90:1834–1837
PubMed
CAS
Google Scholar
Amann ST, Bishop M, Curington C, Toskes PP (1996) Fecal pancreatic elastase 1 is inaccurate in the diagnosis of chronic pancreatitis. Pancreas 13:226–230
PubMed
CAS
Article
Google Scholar
Hardt PD, Hauenschild A, Nalop J, Marzeion AM, Porsch-Ozcurumez M, Luley C, et al. (2003) The commercially available ELISA for pancreatic elastase 1 based on polyclonal antibodies does measure an as yet unknown antigen different from purified elastase 1. Binding studies and clinical use in patients with exocrine pancreatic insufficiency. Z Gastroenterol 41:903–906
PubMed
CAS
Article
Google Scholar
Pezzilli R, Morselli-Labate AM, Palladoro F, Campana D, Piscitelli L, Tomassetti P, et al. (2005) The ELISA fecal elastase-1 polyclonal assay reacts with different antigens than those of the monoclonal assay. Pancreas 31:200–201
PubMed
Article
Google Scholar
Rinderknecht H (1993) Pancreatic secretory enzymes. In: Go VLW, DiMagno EP, Gardner JD, Lebenthal E, Reber HA, Scheele GA (eds) The pancreas: Biology, pathobiology, and disease, 2nd edn. Raven Press, New York, pp 219–251
Google Scholar
Bhagwandin VJ, Hau LW, Mallen-St Clair J, Wolters PJ, Caughey GH (2003) Structure and activity of human pancreasin, a novel tryptic serine peptidase expressed primarily by the pancreas. J Biol Chem 278:3363–3371
PubMed
CAS
Article
Google Scholar
Carey MC, Hernell O (1992) Digestion and absorption of fat. Semin Gastrointest Dis 3:189–208
Google Scholar
Tyssandier V, Reboul E, Dumas JF, Bouteloup-Demange C, Armand M, Marcand J, et al. (2003) Processing of vegetable-borne carotenoids in the human stomach and duodenum. Am J Physiol Gastrointest Liver Physiol 284:G913–923
PubMed
CAS
Google Scholar
Gunstone F (1996) Fatty acid and lipid chemistry. Blackie Academic & Professional, London
Google Scholar
Glass RL, Troolin HA, Jenness R (1967) Comparative biochemical studies of milks. IV. Constituent fatty acids of milk fats. Comp Biochem Physiol 22:415–425
PubMed
CAS
Article
Google Scholar
Breckenridge WC, Marai L, Kuksis A (1969) Triglyceride structure of human milk fat. Can J Biochem 47:761–769
PubMed
CAS
Article
Google Scholar
Freeman CP, Jack EL, Smith LM (1965) Intramolecular fatty acid distribution in the milk fat triglycerides of several species. J Dairy Sci 48:853–858
PubMed
CAS
Google Scholar
Moreau H, Laugier R, Gargouri Y, Ferrato F, Verger R (1988) Human preduodenal lipase is entirely of gastric fundic origin. Gastroenterology 95:1221–1226
PubMed
CAS
Google Scholar
Carriere F, Barrowman JA, Verger R, Laugier R (1993) Secretion and contribution to lipolysis of gastric and pancreatic lipases during a test meal in humans. Gastroenterology 105:876–888
PubMed
CAS
Google Scholar
Scheele G, Bartelt D, Bieger W (1981) Characterization of human exocrine pancreatic proteins by two-dimensional isoelectric focusing/sodium dodecyl sulfate gel electrophoresis. Gastroenterology 80:461–473
PubMed
CAS
Google Scholar
DiMagno EP, Go VL, Summerskill WH (1973) Relations between pancreatic enzyme ouputs and malabsorption in severe pancreatic insufficiency. N Engl J Med 288:813–815
PubMed
CAS
Article
Google Scholar
Bodmer MW, Angal S, Yarranton GT, Harris TJ, Lyons A, King DJ, et al. (1987) Molecular cloning of a human gastric lipase and expression of the enzyme in yeast. Biochim Biophys Acta 909:237–244
PubMed
CAS
Google Scholar
Roussel A, Canaan S, Egloff MP, Riviere M, Dupuis L, Verger R, et al. (1999) Crystal structure of human gastric lipase and model of lysosomal acid lipase, two lipolytic enzymes of medical interest. J Biol Chem 274:16995–17002
PubMed
CAS
Article
Google Scholar
Paltauf F, Wagner E (1976) Stereospecificity of lipases. Enzymatic hydrolysis of enantiomeric alkyldiacyl- and dialkylacylglycerols by lipoprotein lipase. Biochim Biophys Acta 431:359–362
PubMed
CAS
Google Scholar
Gargouri Y, Moreau H, Verger R (1989) Gastric lipases: biochemical and physiological studies. Biochim Biophys Acta 1006:255–271
PubMed
CAS
Google Scholar
Pafumi Y, Lairon D, de la Porte PL, Juhel C, Storch J, Hamosh M, et al. (2002) Mechanisms of inhibition of triacylglycerol hydrolysis by human gastric lipase. J Biol Chem 277:28070–28079
PubMed
CAS
Article
Google Scholar
Armand M, Borel P, Dubois C, Senft M, Peyrot J, Salducci J, et al. (1968) Characterization of emulsions and lipolysis of dietary lipids in the human stomach. Am J Physiol 266:G372–381
Google Scholar
Armand M, Borel P, Pasquier B, Dubois C, Senft M, Andre M, et al. (1996) Physicochemical characteristics of emulsions during fat digestion in human stomach and duodenum. Am J Physiol 271:G172–183
PubMed
CAS
Google Scholar
Armand M, Pasquier B, Andre M, Borel P, Senft M, Peyrot J, et al. (1999) Digestion and absorption of 2 fat emulsions with different droplet sizes in the human digestive tract. Am J Clin Nutr 70:1096–1106
PubMed
CAS
Google Scholar
Gargouri Y, Pieroni G, Riviere C, Lowe PA, Sauniere JF, Sarda L, et al. (1986) Importance of human gastric lipase for intestinal lipolysis: an in vitro study. Biochim Biophys Acta 879:419–423
PubMed
CAS
Google Scholar
Borel P, Armand M, Pasquier B, Senft M, Dutot G, Melin C, et al. (1968) Digestion and absorption of tube-feeding emulsions with different droplet sizes and compositions in the rat. JPEN J Parenter Enteral Nutr 18:534–543
Google Scholar
Armand M, Hamosh M, Mehta NR, Angelus PA, Philpott JR, Henderson TR, et al. (1996) Effect of human milk or formula on gastric function and fat digestion in the premature infant. Pediatr Res 40:429–437
PubMed
CAS
Article
Google Scholar
Abrams CK, Hamosh M, Dutta SK, Hubbard VS, Hamosh P (1987) Role of nonpancreatic lipolytic activity in exocrine pancreatic insufficiency. Gastroenterology 92:125–129
PubMed
CAS
Google Scholar
Abrams CK, Hamosh M, Hubbard VS, Dutta SK, Hamosh P (1984) Lingual lipase in cystic fibrosis. Quantitation of enzyme activity in the upper small intestine of patients with exocrine pancreatic insufficiency. J Clin Invest 73:374–382
PubMed
CAS
Google Scholar
Roulet M, Weber AM, Paradis Y, Roy CC, Chartrand L, Lasalle R, et al. (1980) Gastric emptying and lingual lipase activity in cystic fibrosis. Pediatr Res 14:1360–1362
PubMed
CAS
Article
Google Scholar
Roy CC, Roulet M, Lefebvre D, Chartrand L, Lepage G, Fournier LA (1979) The role of gastric lipolysis on fat absorption and bile acid metabolism in the rat. Lipids 14:811–15
PubMed
CAS
Article
Google Scholar
Carriere F, Grandval P, Renou C, Palomba A, Prieri F, Giallo J, et al. (2005) Quantitative study of digestive enzyme secretion and gastrointestinal lipolysis in chronic pancreatitis. Clin Gastroenterol Hepatol 3:28–38
PubMed
CAS
Article
Google Scholar
Sbarra V, Mas E, Henderson TR, Hamosh M, Lombardo D, Hamosh P (1996) Digestive lipases of the newborn ferret: compensatory role of milk bile salt-dependent lipase. Pediatr Res 40:263–268
PubMed
CAS
Article
Google Scholar
Staggers JE, Fernando-Warnakulasuriya GJP, Wells MA (1981) Studies on fat digestion, absorption, and transport in the suckling rat. II. triacylglycerols: molecular species, sterospecific analysis, and specificity of hydrolysis by lingual lipase. J Lipid Res 22:675–679
PubMed
CAS
Google Scholar
Gregory P, Tabeling R, Kamphues J (1999) Growth and digestion in pancreatic duct ligated pigs. In: Pierzynowski S, Zabielski R (eds) Biology of the pancreas in growing animals. Elsevier Science, New York, pp 381–393
Google Scholar
Tabeling R, Gregory P, Kamphues J (1999) Studies on nutrient digestibilities (precaecal and total) in pancreatic duct ligated pigs and the effects of enzyme substitution. Journal of Animal Physiology and Animal Nutrition 82:251–263
Article
Google Scholar
Lowe ME (2002) The triglyceride lipases of the pancreas. J Lipid Res 43:2007–2016
PubMed
CAS
Article
Google Scholar
Lowe ME, Rosenblum JL, Strauss AW (1989) Cloning and characterization of human pancreatic lipase cDNA. J Biol Chem 264:20042–20048
PubMed
CAS
Google Scholar
Payne RM, Sims HF, Jennens ML, Lowe ME (1968) Rat pancreatic lipase and two related proteins: enzymatic properties and mRNA expression during development. Am J Physiol 266:G914–G921
Google Scholar
Lebenthal E, Lee PC (1980) Development of functional response in human exocrine pancreas. Pediatrics 66:556–560
PubMed
CAS
Google Scholar
Yang Y, Lowe ME (1998) Human pancreatic triglyceride lipase expressed in yeast cells: purification and characterization. Protein Expr Purif 13:36–40
PubMed
CAS
Article
Google Scholar
De Caro A, Figarella C, Amic J, Michel R, Guy O (1977) Human pancreatic lipase: A glycoprotein. Biochim Biophys Acta 490:411–419
PubMed
CAS
Google Scholar
Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, et al. (1992) The alpha/beta hydrolase fold. Protein Eng 5:197–211
PubMed
CAS
Article
Google Scholar
Winkler FK, D’Arcy A, Hunziker W (1990) Structure of human pancreatic lipase. Nature 343:771–774
PubMed
CAS
Article
Google Scholar
Lowe ME (1992) The catalytic site residues and interfacial binding of human pancreatic lipase. J Biol Chem 267:17069–17073
PubMed
CAS
Google Scholar
van Tilbeurgh H, Egloff MP, Martinez C, Rugani N, Verger R, Cambillau C (1993) Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by x-ray crystallography. Nature 362:814–820
PubMed
CAS
Article
Google Scholar
Andersson L, Carriere F, Lowe ME, Nilsson A, Verger R (1996) Pancreatic lipase-related protein 2 but not classical pancreatic lipase hydrolyzes galactolipids. Biochim Biophys Acta 1302:236–240
PubMed
Google Scholar
Verger R (1984) Pancreatic lipase. In: Borgstrom B, Brockman HL (eds) Lipases, 1st edn. Elsevier, Amsterdam, pp 84–150
Google Scholar
van Bennekum AM, Fisher EA, Blaner WS, Harrison EH (2000) Hydrolysis of retinyl esters by pancreatic triglyceride lipase. Biochemistry 39:4900–4906
PubMed
CAS
Article
Google Scholar
Yang LY, Kuksis A, Myher JJ (1990) Lipolysis of menhaden oil triacylglycerols and the corresponding fatty acid alkyl esters by pancreatic lipase in vitro: a reexamination. J Lipid Res 31:137–147
PubMed
CAS
Google Scholar
Borgstrom B, Erlanson-Albertsson C (1984) Pancreatic colipase. In: Borgstrom B, Brockman HL (eds) Lipases, 1st edn. Elsevier, Amsterdam, pp 152–183
Google Scholar
Sternby B, Borgstrom B (1984) One-step purification of procolipase from human pancreatic juice by immobilized antibodies against human colipase. Biochim Biophys Acta 786:109–112
PubMed
CAS
Google Scholar
Lowe ME, Rosenblum JL, McEwen P, Strauss AW (1990) Cloning and characterization of the human colipase cDNA. Biochemistry 29:823–828
PubMed
CAS
Article
Google Scholar
van Tilbeurgh H, Gargouri Y, Dezan C, Egloff MP, Nesa MP, Ruganie N, et al. (1993) Crystallization of pancreatic procolipase and of its complex with pancreatic lipase. J Mol Biol 229:552–554
PubMed
CAS
Article
Google Scholar
Figarella C, De Caro A, Leupold D, Poley JR (1980) Congenital pancreatic lipase deficiency. J Pediatr 96:412–416
PubMed
CAS
Article
Google Scholar
Hegele RA, Ramdath DD, Ban MR, Carruthers MN, Carrington CV, Cao H (2001) Polymorphisms in PNLIP, encoding pancreatic lipase, and associations with metabolic traits. J Hum Genet 46:320–324
PubMed
CAS
Article
Google Scholar
Carriere F, Renou C, Lopez V, De Caro J, Ferrato F, Lengsfeld H, et al. (2000) The specific activities of human digestive lipases measured from the in vivo and in vitro lipolysis of test meals. Gastroenterology 119:1689–1660
Article
Google Scholar
Hildebrand H, Borgstrom B, Bekassy A, Erlanson-Albertsson C, Helin A (1982) Isolated colipase deficiency in two brothers. Gut 23:243–246
PubMed
CAS
Article
Google Scholar
Huggins KW, Camarota LM, Howles PN, Hui DY (2003) Pancreatic triglyceride lipase deficiency minimally affects dietary fat absorption but dramatically decreases dietary cholesterol absorption in mice. J Biol Chem 278:42899–42905
PubMed
CAS
Article
Google Scholar
Sebban-Kreuzer C, Ayvazian L, Juhel C, Salles JP, Chapus C, Kerfelec B (2003) Inhibitory effect of the pancreatic lipase C-terminal domain on intestinal lipolysis in rats fed a high-fat diet: chronic study. Int J Obes Relat Metab Disord 27:319–325
PubMed
CAS
Article
Google Scholar
Ayvazian L, Kerfelec B, Granon S, Foglizzo E, Crenon I, Dubois C, et al. (2001) The lipase C-terminal domain. A novel unusual inhibitor of pancreatic lipase activity. J Biol Chem 276:14014–14018
PubMed
CAS
Google Scholar
D’Agostino D, Cordle RA, Kullman J, Erlanson-Albertsson C, Muglia LJ, Lowe ME (2002) Decreased postnatal survival and altered body weight regulation in procolipase deficient mice. J Biol Chem 277:7170–7177
PubMed
CAS
Article
Google Scholar
Hide WA, Chan L, Li W-H (1992) Structure and evolution of the lipase superfamily. J Lipid Res 33:167–178
PubMed
CAS
Google Scholar
Yang Y, Sanchez D, Figarella C, Lowe ME (2000) Discoordinate expression of pancreatic lipase and two related proteins in the human fetal pancreas. Pediatr Res 47:184–188
PubMed
CAS
Article
Google Scholar
De Caro J, Sias B, Grandval P, Ferrato F, Halimi H, Carriere F, et al. (2004) Characterization of pancreatic lipase-related protein 2 isolated from human pancreatic juice. Biochim Biophys Acta 1701:89–99
PubMed
CAS
Google Scholar
De Caro J, Carriere F, Barboni P, Giller T, Verger R, De Caro A (1998) Pancreatic lipase-related protein 1 (PLRP1) is present in the pancreatic juice of several species. Biochim Biophys Acta 1387:331–341
Google Scholar
Giller T, Buchwald P, Blum-Kaelin D, Hunziker W (1992) Two novel human pancreatic lipase related proteins, hPLRP1 and hPLRP2: differences in colipase dependency and in lipase activity. J Biol Chem 267:16509–16516
PubMed
CAS
Google Scholar
Roussel A, Yang Y, Ferrato F, Verger R, Cambillau C, Lowe M (1998) Structure and activity of rat pancreatic lipase-related protein 2. J Biol Chem 273:32121–32128
PubMed
CAS
Article
Google Scholar
Roussel A, deCaro J, Bezzine S, Gastinel L, de Caro A, Carriere F, et al. (1998) Reactivation of the totally inactive pancreatic lipase RP1 by structure-predicted point mutations. Proteins 32:523–531
PubMed
CAS
Article
Google Scholar
Crenon I, Foglizzo E, Kerfelec B, Verine A, Pignol D, Hermoso J, et al. (1998) Pancreatic lipase-related protein type I: a specialized lipase or an inactive enzyme. Protein Eng 11:135–142
PubMed
CAS
Article
Google Scholar
Sias B, Ferrato F, Grandval P, Lafont D, Boullanger P, De Caro A, et al. (2004) Human pancreatic lipase-related protein 2 is a galactolipase. Biochemistry 43:10138–10148
PubMed
CAS
Article
Google Scholar
Gronborg M, Bunkenborg J, Kristiansen TZ, Jensen ON, Yeo CJ, Hruban RH, et al. (2004) Comprehensive proteomic analysis of human pancreatic juice. J Proteome Res 3:1042–1055
PubMed
CAS
Article
Google Scholar
Andersson L, Bratt C, Arnoldsson KC, Herslof B, Olsson NU, Sternby B, et al. (1995) Hydrolysis of galactolipids by human pancreatic lipolytic enzymes and duodenal contents. J Lipid Res 36:1392–1400
PubMed
CAS
Google Scholar
Lowe ME, Kaplan MH, Jackson-Grusby L, D’Agostino D, Grusby MJ (1998) Decreased neonatal dietary fat absorption and T cell cytotoxicity in pancreatic lipase-related protein 2-deficient mice. J Biol Chem 273:31215–31221
PubMed
CAS
Article
Google Scholar
D’Agostino D, Lowe ME (2004) Pancreatic lipase-related protein 2 is the major colipase-dependent pancreatic lipase in suckling mice. J Nutr 134:132–134
PubMed
CAS
Google Scholar
Reue K, Zambaux J, Wong H, Lee G, Leete TH, Ronk M, et al. (1991) cDNA cloning of carboxyl ester lipase from human pancreas reveals a unique proline-rich repeat unit. J Lipid Res 32:267–276
PubMed
CAS
Google Scholar
Hernell O, Olivecrona T (1974) Human milk lipases. I. Serum-stimulated lipase. J Lipid Res 15:367–374
PubMed
CAS
Google Scholar
Hernell O, Olivecrona T (1974) Human milk lipases. II. Bile salt-stimulated lipase. Biochim Biophys Acta 369:234–244
PubMed
CAS
Google Scholar
Baba T, Downs D, Jackson KW, Tang J, Wang CS (1991) Structure of human milk bile salt activated lipase. Biochemistry 30:500–510
PubMed
CAS
Article
Google Scholar
Nilsson J, Blackberg L, Carlsson P, Enerback S, Hernell O, Bjursell G (1990) cDNA cloning of human-milk bile-salt-stimulated lipase and evidence for its identity to pancreatic carboxylic ester hydrolase. Eur J Biochem 192:543–550
PubMed
CAS
Article
Google Scholar
Moore SA, Kingston RL, Loomes KM, Hernell O, Blackberg L, Baker HM, et al. (2001) The structure of truncated recombinant human bile salt-stimulated lipase reveals bile salt-independent conformational flexibility at the active-site loop and provides insights into heparin binding. J Mol Biol 312:511–523
PubMed
CAS
Article
Google Scholar
Chen Q, Blackberg L, Nilsson A, Sternby B, Hernell O (1968) Digestion of triacylglycerols containing long-chain polyenoic fatty acids in vitro by colipase-dependent pancreatic lipase and human milk bile salt-stimulated lipase. Biochim Biophys Acta 1210:239–243
Google Scholar
Chen Q, Sternby B, Nilsson A (1989) Hydrolysis of triacylglycerol arachidonic and linoleic acid ester bonds by human pancreatic lipase and carboxyl ester lipase. Biochim Biophys Acta 1004:372–385
PubMed
CAS
Google Scholar
Hernell O, Blackberg L, Chen Q, Sternby B, Nilsson A (1993) Does the bile salt-stimulated lipase of human milk have a role in the use of milk long-chain polyunsaturated fatty acids? J Pediatr Gastroenterol Nutr 16:426–431
PubMed
CAS
Article
Google Scholar
Williamson S, Finucane E, Ellis H, Gamsu HR (1978) Effect of heat treatment of human milk on absorption of nitrogen, fat, sodium, calcium, and phosphorus by preterm infants. Arch Dis Child 53:555–563
PubMed
CAS
Google Scholar
Alemi B, Hamosh M, Scanlon JW, Salzman-Mann C, Hamosh P (1981) Fat digestion in very low-birth-weight infants: effect of addition of human milk to low-birth-weight formula. Pediatrics 68:484–489
PubMed
CAS
Google Scholar
Howles PN, Stemmerman GN, Fenoglio-Preiser CM, Hui DY (1999) Carboxyl ester lipase activity in milk prevents fat-derived intestinal injury in neonatal mice. Am J Physiol 277:G653–G661
PubMed
CAS
Google Scholar
Weng W, Li L, van Bennekum AM, Potter SH, Harrison EH, Blaner WS, et al. (1999) Intestinal absorption of dietary cholesteryl ester is decreased but retinyl ester absorption is normal in carboxyl ester lipase knockout mice. Biochemistry 38:4143–4149
PubMed
CAS
Article
Google Scholar
Lombardo D (2001) Bile salt-dependent lipase: its pathophysiological implications. Biochim Biophys Acta 1533:1–28
PubMed
CAS
Google Scholar
Kirby RJ, Zheng S, Tso P, Howles PN, Hui DY (2002) Bile salt-stimulated carboxyl ester lipase influences lipoprotein assembly and secretion in intestine. A process mediated via ceramide hydrolysis. J Biol Chem 277:4104–4109
PubMed
CAS
Article
Google Scholar
Figarella C, Clemente F, Guy O (1971) A zymogen of phospholipase A in human pancreatic juice. Biochim Biophys Acta 227:213–217
PubMed
CAS
Google Scholar
Kozumplik V, Staffa F, Hoffmann GE (1989) Purification of pancreatic phospholipase A2 from human duodenal juice. Biochim Biophys Acta 1002:395–397
PubMed
CAS
Google Scholar
Seilhamer JJ, Randall TL, Yamanaka M, Johnson LK (1986) Pancreatic phospholipase A2: isolation of the human gene and cDNAs from porcine pancreas and human lung. DNA 5:519–527
PubMed
CAS
Google Scholar
Chen A, Innis S (2004) Assessment of phospholipid malabsorption by quantification of fecal phospholipid. J Pediatr Gastroenterol Nutr 39:85–91
PubMed
Article
Google Scholar
Richmond BL, Boileau AC, Zheng S, Huggins KW, Granholm NA, Tso P, et al. (2001) Compensatory phospholipid digestion is required for cholesterol absorption in pancreatic phospholipase A(2)-deficient mice. Gastroenterology 120:1193–1202
PubMed
CAS
Article
Google Scholar
Borgstrom B (1980) Importance of phospholipids, pancreatic phospholipase A2, and fatty acid for the digestion of dietary fat: in vitro experiments with the porcine enzymes. Gastroenterology 78:954–962
PubMed
CAS
Google Scholar
Borgstrom B, Erlanson-Albertsson C (1982) Hydrolysis of milk fat globules by pancreatic lipase. Role of colipase, phospholipase A2, and bile salts. J Clin Invest 70:30–32
PubMed
CAS
Article
Google Scholar
Blackberg L, Hernell O, Olivecrona T (1981) Hydrolysis of human milk fat globules by pancreatic lipase. Role of colipase, phospholipase A2, and bile salts. Journal of Clinical Investigation 67:1748–1752
PubMed
CAS
Google Scholar
Bernback S, Blackberg L, Hernell O (1990) The complete digestion of human milk triacylglycerol in vitro requires gastric lipase, pancreatic colipase-dependent lipase, and bile salt-stimulated lipase. Journal of Clinical Investigation 85:1221–1226
PubMed
CAS
Google Scholar
Caspary WF (1992) Physiology and pathophysiology of intestinal absorption. Am J Clin Nutr 55(1 Suppl):299S–308S
PubMed
CAS
Google Scholar
Greaves JP, Hollingsworth DF (1964) Changes in the pattern of carbohydrate consumption in Britain. Proc Nutr Soc 23:136–143
PubMed
CAS
Article
Google Scholar
Nishide T, Emi M, Nakamura Y, Matsubara K (1984) Corrected sequences of cDNAs for human salivary and pancreatic alpha-amylases [corrected]. Gene 28:263–270
PubMed
CAS
Article
Google Scholar
Stiefel DJ, Keller PJ (1973) Preparation and some properties of human pancreatic amylase including a comparison with human parotid amylase. Biochim Biophys Acta 302:345–361
PubMed
CAS
Google Scholar
Buisson G, Duee E, Haser R, Payan F (1987) Three dimensional structure of porcine pancreatic alpha-amylase at 2.9 A resolution. Role of calcium in structure and activity. EMBO J 6:3909–3916
PubMed
CAS
Google Scholar
Seigner C, Prodanov E, Marchis-Mouren G (1987) The determination of subsite binding energies of porcine pancreatic alpha-amylase by comparing hydrolytic activity towards substrates. Biochim Biophys Acta 913:200–209
PubMed
CAS
Google Scholar
Robyt JF, French D (1970) The action pattern of porcine pancreatic alpha-amylase in relationship to the substrate binding site of the enzyme. J Biol Chem 245:3917–3927
PubMed
CAS
Google Scholar
Robyt JF, French D (1970) Multiple attack and polarity of action of porcine pancreatic alpha-amylase. Arch Biochem Biophys 138:662–670
PubMed
CAS
Article
Google Scholar
Saito N, Horiuchi T, Yoshida M, Imai T (1979) Action of human pancreatic and salivary alpha-amylases on maltooligosaccharides: evaluation of kinetic parameters. Clin Chim Acta 97:253–260
PubMed
CAS
Article
Google Scholar
Chan Y, Braun PJ, French D, Robyt JF (1984) Porcine pancreatic alpha-amylase hydrolysis of hydroxyethylated amylose and specificity of subsite binding. Biochemistry 23:5795–5800
PubMed
CAS
Article
Google Scholar
Braun PJ, French D, Robyt JF (1985) Porcine-pancreatic alpha amylase hydrolysis of substrates containing 6-deoxy-D-glucose and 6-deoxy-6-fluoro-D-glucose and the specificity of subsite binding. Carbohydr Res 143:107–116
PubMed
CAS
Article
Google Scholar
Braun PJ, French D, Robyt JF (1985) The effect of substrate modification on porcine pancreatic alpha-amylase subsite binding: hydrolysis of substrates containing 2-deoxy-D-glucose and 2-amino-2-deoxy-D-glucose. Arch Biochem Biophys 242:231–239
PubMed
CAS
Article
Google Scholar
Braun PJ, French D, Robyt JF (1985) The effect of substrate modification on binding of porcine pancreatic alpha amylase: hydrolysis of modified amylose containing D-allose residues. Carbohydr Res 141:265–271
PubMed
CAS
Article
Google Scholar
Alpers DH (1994) Digestion and absorption of carbohydrates and proteins. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Raven Press, New York, pp 1723–1749
Google Scholar
Ladas SD, Giorgiotis K, Raptis SA (1993) Complex carbohydrate malabsorption in exocrine pancreatic insufficiency. Gut 34:984–987
PubMed
CAS
Article
Google Scholar
Layer P, Zinsmeister AR, DiMagno EP (1986) Effects of decreasing intraluminal amylase activity on starch digestion and postprandial gastrointestinal function in humans. Gastroenterology 91:41–48
PubMed
CAS
Google Scholar
Hiele M, Ghoos Y, Rutgeerts P, Vantrappen G (1989) Starch digestion in normal subjects and patients with pancreatic disease, using a 13CO2 breath test. Gastroenterology 96:503–509
PubMed
CAS
Google Scholar
Lankisch PG, Otto J (1986) Salivary isoamylase in duodenal aspirates. Dig Dis Sci 31:1299–1302
PubMed
CAS
Article
Google Scholar
Sjolund K, Haggmark A, Ihse I, Skude G, Karnstrom U, Wikander M (1991) Selective deficiency of pancreatic amylase. Gut 32:546–548
PubMed
CAS
Article
Google Scholar
Lowe CU, May CD (1951) Selective pancreatic deficiency, absent amylase, diminished trypsin, and normal lipase. AMA Am J Dis Child 82:459–464
PubMed
CAS
Google Scholar
Mehta DI, Wang HH, Akins RE, Wang L, Proujansky R (2000) Isolated pancreatic amylase deficiency: probable error in maturation. J Pediatr 136:844–846
PubMed
CAS
Article
Google Scholar
Walters MP, Littlewood JM (1998) Faecal bile acid and dietary residue excretion in cystic fibrosis: age group variations. J Pediatr Gastroenterol Nutr 27:296–300
PubMed
CAS
Article
Google Scholar
Nordgaard I, Rumessen JJ, Gudmand-Hoyer E (1992) Assimilation of wheat starch in patients with chronic pancreatitis. Positive effect of enzyme replacement. Scand J Gastroenterol 27:412–416
PubMed
CAS
Google Scholar
Frederiksen HJ, Mogensen NB, Magid E (1985) The clinical significance of salivary amylase in duodenal aspirates in evaluation of exocrine pancreas function. Scand J Gastroenterol 20:1046–1048
PubMed
CAS
Google Scholar
Ramasubbu N, Paloth V, Luo Y, Brayer GD, Levine MJ (1996) Structure of human salivary alpha-amylase at 1.6 A resolution: implications for its role in the oral cavity. Acta Crystallogr D Biol Crystallogr 52:435–446
PubMed
CAS
Article
Google Scholar
Lott JA, Lu CJ (1991) Lipase isoforms and amylase isoenzymes: assays and application in the diagnosis of acute pancreatitis. Clin Chem 37:361–368
PubMed
CAS
Google Scholar
Karn RC (1978) The comparative biochemistry, physiology, and genetics of animal alpha-amylases. Adv Comp Physiol Biochem 7:1–103
PubMed
CAS
Google Scholar
Hoebler C, Karinthi A, Devaux MF, Guillon F, Gallant DJ, Bouchet B, et al. (1998) Physical and chemical transformations of cereal food during oral digestion in human subjects. Br J Nutr 80:429–436
PubMed
CAS
Article
Google Scholar
Murray RD, Kerzner B, Sloan HR, McClung HJ, Gilbert M, Ailabouni A (1986) The contribution of salivary amylase to glucose polymer hydrolysis in premature infants. Pediatr Res 20:186–191
PubMed
CAS
Article
Google Scholar
Kurahashi M, Inomata K (1989) Role of parotid amylase in starch digestion in the gastro-intestinal tracts of diabetic rats. J Dent Res 68:1366–1369
PubMed
CAS
Google Scholar
Kurahashi M, Inomata K (1999) Effects of dietary consistency and water content on parotid amylase secretion and gastric starch digestion in rats. Arch Oral Biol 44:1013–1019
PubMed
CAS
Article
Google Scholar