Skip to main content

Human Pancreatic Digestive Enzymes

Abstract

A primary function of the pancreas is to produce digestive enzymes that are delivered to the small intestine for the hydrolysis of complex nutrients. Much of our understanding of digestive enzymes comes from studies in animals. New technologies and the availability of the sequence of the human genome allow for a critical review of older reports and assumptions based on animal studies. This report updates our understanding of human pancreatic digestive enzymes with a focus on new insights into the biology of human proteases, lipases and amylases.

This is a preview of subscription content, access via your institution.

References

  1. Rothman SS (1977) The digestive enzymes of the pancreas: a mixture of inconsistent proportions. Ann Rev Physiol 39:373–389

    CAS  Article  Google Scholar 

  2. Schmitz J (2004) Maldigestion and malabsorption. In: Walker WA, Goulet O, Kleinman RE, Sherman PM, Shneider BL, Sanderson IR (eds) Pediatric Gastrointestinal Disease: Pathophysiology, Diagnosis, Management. Decker, Hamilton, Canada, pp 8–20

    Google Scholar 

  3. Bohak Z (1969) Purification and characterization of chicken pepsinogen and chicken pepsin. J Biol Chem 244:4638–4648

    PubMed  CAS  Google Scholar 

  4. Tabeling R, Gregory P, Kamphues J (1999) Studies on nutrient digestibilities (pre-caecal and total) in pancreatic duct ligated pigs and the effects of enzyme substitution. J Anim Physiol Anim Nutr 82:251–263

    Article  Google Scholar 

  5. Gregory PC (1999) Growth and digestion in pancreatic duct ligated pigs. Effect of enzyme supplementation. In: Pierzynowski SG, Zabielski R (eds) Biology of the Pancreas in Growing Animals. Elsevier Science, New York, pp 381–393

    Google Scholar 

  6. Farrell JJ (2002) Digestion and absorption of nutrients and vitamins. In: Feldman M, Friedman LS, Sleisenger MH (eds) Sleisenger & Fortran's Gastrointestinal and Liver Disease. Saunders, Philadelphia, pp 1715–1750

    Google Scholar 

  7. Whitcomb DC (1999) Early trypsinogen activation in acute pancreatitis. Gastroenterology 116:770–773

    CAS  Google Scholar 

  8. Whitcomb DC (2000) Genetic predispositions to acute and chronic pancreatitis. Med Clin North Am 84:531–547

    PubMed  CAS  Article  Google Scholar 

  9. Ghelis C, Tempete-Gaillourdet M, Yon JM (1978) The folding of pancreatic elastase: independent domain refolding and inter-domain interaction. Biochem Biophys Res Commun 84:31–36

    PubMed  CAS  Article  Google Scholar 

  10. Hubbard S, Eisenmenger F, Thornton (1994) Modeling studies of the change in conformation required for cleavage of limited proteolytic sites. Protein Sci 3:757–768

    PubMed  CAS  Google Scholar 

  11. Rinderknecht H, Renner IG, Carmack C (1979) Trypsinogen variants in pancreatic juice of healthy volunteers, chronic alcoholics, and patients with pancreatitis and cancer of the pancreas. Gut 20:886–891

    PubMed  CAS  Article  Google Scholar 

  12. Figarella C, Clemente F, Guy O (1969) On zymogens of the human pancreatic juice. FEBS Lett 3:351–353

    PubMed  CAS  Article  Google Scholar 

  13. Scheele G, Bartelt D, Bieger W (1981) Characterization of human exocrine pancreatic proteins by two-dimensional isoelectric focusing/sodium dodecyl sulfate gel electrophoresis. Gastroenterology 80:461–473

    PubMed  CAS  Google Scholar 

  14. Emi M, Nakamura Y, Ogawa M, Yamamoto T, Nishide T, Mori T, et al. (1986) Cloning, characterization and nucleotide sequences of two cDNAs encoding human pancreatic trypsinogens. Gene 41:305–310

    PubMed  CAS  Article  Google Scholar 

  15. Rowen L, Koop BF, Hood L (1996) The complete 685-kilobase DNA sequence of the human beta T cell receptor locus. Science 272:1755–1762

    PubMed  CAS  Article  Google Scholar 

  16. Chen J-M, Férec C (2004) Human trypsins. In: Earret AJ, Rawlings ND, Woessner JF (eds) Handbook of Proteolytic Enzymes. Elsevier, London, pp 1489–1493

    Google Scholar 

  17. Rinderknecht H, Stace NH, Renner IG (1985) Effects of chronic alcohol abuse on exocrine pancreatic secretion in man. Dig Dis Sci 30:65–71

    PubMed  CAS  Article  Google Scholar 

  18. Kukor Z, Tóth M, Sahin-Tóth M (2003) Human anionic trypsinogen. Eur J Biochem 270:2047–2058

    PubMed  CAS  Article  Google Scholar 

  19. Liebermann J, Petersson U, Marks WH, Borgstrom A (1998) The ratio between mRNA's for anionic and cationic trypsinogens does not change during acute experimental pancreatitis. Pancreas 17:446

    Google Scholar 

  20. Colomb E, Figarella C (1979) Comparative studies on the mechanism of activation of the two human trypsinogens. Biochem Biophys Acta 571:343–351

    PubMed  CAS  Google Scholar 

  21. Rinderknecht H, Renner IG, Abramson SB, Carmack C (1984) Mesotrypsin: a new inhibitor-resistant protease from a zymogen in human pancreatic tissue and fluid. Gastroenterology 86:681–692

    PubMed  CAS  Google Scholar 

  22. Nyaruhucha CN, Kito M, Fukuoka SI (1997) Identification and expression of the cDNA-encoding human mesotrypsin(ogen), an isoform of trypsin with inhibitor resistance. J Biol Chem 272:10573–10578

    PubMed  CAS  Article  Google Scholar 

  23. Kitamoto Y, Yuan X, Wu Q, McCourt DW, Sadler JE (1994) Enterokinase, the initiator of intestinal digestion, is a mosaic protease composed of a distinctive assortment of domains. Proc Natl Acad Sci U S A 91:7588–7592

    PubMed  CAS  Article  Google Scholar 

  24. Stroud RM, Kossiakoff AA, Chambers JL (1977) Mechanisms of zymogen activation. Annu Rev Biophys Bioeng 6:177–193

    PubMed  CAS  Article  Google Scholar 

  25. Delaage M, Lazdunski M (1967) The binding of Ca2+ to trypsinogen and its relation to the mechanism of activation. Biochem Biophys Res Commun 28:390–394

    PubMed  CAS  Article  Google Scholar 

  26. Bennett WS, Huber R (1984) Structural and functional aspects of domain motions in proteins. CRC Crit Rev Biochem 15:291–384

    PubMed  CAS  Google Scholar 

  27. Kukor Z, Tóth M, Pal G, Sahin-Tóth M (2002) Human cationic trypsinogen. Arg(117) is the reactive site of an inhibitory surface loop that controls spontaneous zymogen activation. J Biol Chem 277:6111–6117

    PubMed  CAS  Article  Google Scholar 

  28. Maroux S, Rovery M, Desnuelle P (1967) An autolyzed and still active form of bovine trypsin. Biochim Biophys Acta 140:377–380

    PubMed  CAS  Google Scholar 

  29. Schroeder DD, Shaw E (1968) Chromatography of trypsin and its derivatives. Characterization of a new active form of bovine trypsin. J Biol Chem 243:2943–2949

    PubMed  CAS  Google Scholar 

  30. Rovery M (1988) Limited proteolysis in pancreatic chymotrypsinogens and trypsinogens. Biochimie 70:1131–1135

    PubMed  CAS  Article  Google Scholar 

  31. Varallyay E, Pal G, Patthy A, Szilagyi L, Graf L (1998) Two mutations in rat trypsin confer resistance against autolysis. Biochem Biophys Res Commun 243:56–60

    PubMed  CAS  Article  Google Scholar 

  32. Simon P, Weiss FU, Sahin-Tóth M, Parry M, Nayler O, Lenfers B, et al. (2001) Hereditary pancreatitis caused by a novel PRSS1 mutation (Arg-122→Cys) that alters autoactivation and autodegradation of cationic trypsinogen. J Biol Chem 21:21

    Google Scholar 

  33. Whitcomb DC (2004) Advances in understanding the mechanisms leading to chronic pancreatitis. Nat Clin Pract Gastroenterol Hepatol 1:46–52

    PubMed  Article  Google Scholar 

  34. Whitcomb DC (2004) Value of genetic testing in management of pancreatitis. Gut 53:1710–1717

    PubMed  CAS  Article  Google Scholar 

  35. Figarella C, Miszczuk-Jamska B, Barrett AJ (1988) Possible lysosomal activation of pancreatic zymogens. Activation of both human trypsinogens by cathepsin B and spontaneous acid activation of human trypsinogen 1. Biol Chem Hoppe-Seylers 369(Suppl):293–298

    CAS  Google Scholar 

  36. Lerch MM, Gorelick FS (2000) Early trypsinogen activation in acute pancreatitis. Med Clin North Am 84:549–563

    PubMed  CAS  Article  Google Scholar 

  37. Kukor Z, Mayerle J, Kruger B, Toth M, Steed PM, Halangk W, Lerch MM, Sahin-Toth M (2002) Presence of cathepsin B in the human pancreatic secretory pathway and its role in trypsinogen activation during hereditary pancreatitis. J Biol Chem 277:21389–21396

    PubMed  CAS  Article  Google Scholar 

  38. Klonowski-Stumpe H, Luthen R, Han B, Sata N, Haussinger D, Niederau C (1998) Inhibition of cathepsin B does not affect the intracellular activation of trypsinogen by cerulein hyperstimulation in isolated rat pancreatic acinar cells. Pancreas 16:96–101

    PubMed  CAS  Article  Google Scholar 

  39. Halangk W, Lerch MM, Brandt-Nedelev B, Roth W, Ruthenbuerger M, Reinheckel T, et al. (2000) Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis. J Clin Invest 106:773–781

    PubMed  CAS  Google Scholar 

  40. Mithofer K, Fernandez-Del Castillo C, Rattner DW, Warshaw AL (1998) Subcellular kinetics of early trypsinogen activation in acute rodent pancreatitis. Am J Physiol 274:G71–G79

    PubMed  CAS  Google Scholar 

  41. Gorry MC, Gabbaizedeh D, Furey W, Gates LK Jr, Preston RA, Aston CE, et al. (1997) Mutations in the cationic trypsinogen gene are associated with recurrent acute and chronic pancreatitis. Gastroenterology 113:1063–1068

    PubMed  CAS  Article  Google Scholar 

  42. Witt H, Luck W, Becker M (1999) A signal peptide cleavage site mutation in the cationic trypsinogen gene is strongly associated with chronic pancreatitis. Gastroenterology 117:7–10

    PubMed  CAS  Article  Google Scholar 

  43. Whitcomb DC, Gorry MC, Preston RA, Furey W, Sossenheimer MJ, Ulrich CD, et al. (1996) Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene. Nat Genet 14:141–145

    PubMed  CAS  Article  Google Scholar 

  44. Pfützer R, Myers E, Applebaum-Shapiro S, Finch R, Ellis I, Neoptolemos J, et al. (2002) Novel cationic trypsinogen (PRSS1) N29T and R122C mutations cause autosomal dominant hereditary pancreatitis. Gut 50:271–272

    PubMed  Article  Google Scholar 

  45. Frick TW, Fernandez, del CC, Bimmler D, Warshaw AL (1997) Elevated calcium and activation of trypsinogen in rat pancreatic acini. Gut 41:339–343

    PubMed  CAS  Article  Google Scholar 

  46. Sutton R, Criddle D, Raraty MG, Tepikin A, Neoptolemos JP, Petersen OH (2003) Signal transduction, calcium and acute pancreatitis. Pancreatology 3:497–505

    PubMed  CAS  Article  Google Scholar 

  47. Bishop MD, Freedman SD, Zielenski J, Ahmed N, Dupuis A, Martin S, et al. (2005) The cystic fibrosis transmembrane conductance regulator gene and ion channel function in patients with idiopathic pancreatitis. Hum Genet 118:372–381

    PubMed  CAS  Article  Google Scholar 

  48. Alazmi WM, Fogel EL, Schmidt S, Watkins JL, McHenry L, Sherman S, et al. (2006) ERCP findings in idiopathic pancreatitis: patients who are cystic fibrosis gene positive and negative. Gastrointest Endosc 63:234–239

    PubMed  Article  Google Scholar 

  49. Whitcomb DC (2006) Clinical practice. Acute pancreatitis. N Engl J Med 354:2142–2150

    PubMed  Article  Google Scholar 

  50. Ossovskaya VS, Bunnett NW (2004) Protease-activated receptors: contribution to physiology and disease. Physiol Rev 84:579–621

    PubMed  CAS  Article  Google Scholar 

  51. Namkung W, Han W, Luo X, Muallem S, Cho KH, Kim KH, et al. (2004) Protease-activated receptor 2 exerts local protection and mediates some systemic complications in acute pancreatitis. Gastroenterology 126:1844–1859

    PubMed  Article  CAS  Google Scholar 

  52. Vergnolle N (2005) Clinical relevance of proteinase activated receptors (pars) in the gut. Gut 54:867–874

    Google Scholar 

  53. Hansen KK, Sherman PM, Cellars L, Andrade-Gordon P, Pan Z, Baruch A, et al. (2005) A major role for proteolytic activity and proteinase-activated receptor-2 in the pathogenesis of infectious colitis. Proc Natl Acad Sci USA 102:8363–8368

    PubMed  CAS  Article  Google Scholar 

  54. Cottrell GS, Amadesi S, Grady EF, Bunnett NW (2004) Trypsin IV, a novel agonist of protease-activated receptors 2 and 4. J Biol Chem 279:13532–13539

    PubMed  CAS  Article  Google Scholar 

  55. Layer P, Go VL, DiMagno EP (1986) Fate of pancreatic enzymes during small intestinal aboral transit in humans. Am J Physiol 251:G475–480

    PubMed  CAS  Google Scholar 

  56. Carrere J, Figarella C, Guy O, Thouvenot JP (1986) Human pancreatic chymotrypsinogen A: a non-competitive enzyme immunoassay, and molecular forms in serum and amniotic fluid. Biochim Biophys Acta 883:46–53

    PubMed  CAS  Google Scholar 

  57. Birktoft JJ, Blow DM, Henderson R, Steitz TA (1970) I. Serine proteinases. The structure of alpha-chymotrypsin. Philos Trans R Soc Lond B Biol Sci 257:67–76

    PubMed  CAS  Article  Google Scholar 

  58. Kardos J, Bodi A, Zavodszky P, Venekei I, Graf L (1999) Disulfide-linked propeptides stabilize the structure of zymogen and mature pancreatic serine proteases. Biochemistry 38:12248–12257

    PubMed  CAS  Article  Google Scholar 

  59. Appelt G, Schulze B, Rogos R, Kopperschlager G (1988) Analysis of human exocrine pancreatic proteins by means of pore gradient polyacrylamide gel electrophoresis. Biomed Biochim Acta 47:133–140

    PubMed  CAS  Google Scholar 

  60. Tomita N, Izumoto Y, Horii A, Doi S, Yokouchi H, Ogawa M, et al. (1989) Molecular cloning and nucleotide sequence of human pancreatic prechymotrypsinogen cDNA. Biochem Biophys Res Commun 158:569–575

    PubMed  CAS  Article  Google Scholar 

  61. Reseland JE, Larsen F, Solheim J, Eriksen JA, Hanssen LE, Prydz H (1997) A novel human chymotrypsin-like digestive enzyme. J Biol Chem 272:8099–8104

    PubMed  CAS  Article  Google Scholar 

  62. Tomomura A, Akiyama M, Itoh H, Yoshino I, Tomomura M, Nishii Y, et al. (1996) Molecular cloning and expression of human caldecrin. FEBS Lett 386:26–28

    PubMed  CAS  Article  Google Scholar 

  63. Yoshino-Yasuda I, Kobayashi K, Akiyama M, Itoh H, Tomomura A, Saheki T (1998) Caldecrin is a novel-type serine protease expressed in pancreas, but its homologue, elastase IV, is an artifact during cloning derived from caldecrin gene. J Biochem (Tokyo) 123:546–554

    CAS  Google Scholar 

  64. Rosenbloom J (1984) Elastin: relation of protein and gene structure to disease. Lab Invest 51:605–623

    PubMed  CAS  Google Scholar 

  65. Rose SD, MacDonald RJ (1997) Evolutionary silencing of the human elastase I gene (ELA1). Hum Mol Genet 6:897–903

    PubMed  CAS  Article  Google Scholar 

  66. Kawashima I, Tani T, Shimoda K, Takiguchi Y (1987) Characterization of pancreatic elastase II cDNAs: two elastase II mRNAs are expressed in human pancreas. DNA 6:163–172

    PubMed  CAS  Google Scholar 

  67. Walkowiak J, Herzig KH, Strzykala K, Przyslawski J, Krawczynski M (2002) Fecal elastase-1 is superior to fecal chymotrypsin in the assessment of pancreatic involvement in cystic fibrosis. Pediatrics 110:e7

    PubMed  Article  Google Scholar 

  68. Gullo L, Ventrucci M, Tomassetti P, Migliori M, Pezzilli R (1999) Fecal elastase 1 determination in chronic pancreatitis. Dig Dis Sci 44:210–213

    PubMed  CAS  Article  Google Scholar 

  69. Dominguez-Munoz JE, Hieronymus C, Sauerbruch T, Malfertheiner P (1995) Fecal elastase test: evaluation of a new noninvasive pancreatic function test. Am J Gastroenterol 90:1834–1837

    PubMed  CAS  Google Scholar 

  70. Amann ST, Bishop M, Curington C, Toskes PP (1996) Fecal pancreatic elastase 1 is inaccurate in the diagnosis of chronic pancreatitis. Pancreas 13:226–230

    PubMed  CAS  Article  Google Scholar 

  71. Hardt PD, Hauenschild A, Nalop J, Marzeion AM, Porsch-Ozcurumez M, Luley C, et al. (2003) The commercially available ELISA for pancreatic elastase 1 based on polyclonal antibodies does measure an as yet unknown antigen different from purified elastase 1. Binding studies and clinical use in patients with exocrine pancreatic insufficiency. Z Gastroenterol 41:903–906

    PubMed  CAS  Article  Google Scholar 

  72. Pezzilli R, Morselli-Labate AM, Palladoro F, Campana D, Piscitelli L, Tomassetti P, et al. (2005) The ELISA fecal elastase-1 polyclonal assay reacts with different antigens than those of the monoclonal assay. Pancreas 31:200–201

    PubMed  Article  Google Scholar 

  73. Rinderknecht H (1993) Pancreatic secretory enzymes. In: Go VLW, DiMagno EP, Gardner JD, Lebenthal E, Reber HA, Scheele GA (eds) The pancreas: Biology, pathobiology, and disease, 2nd edn. Raven Press, New York, pp 219–251

    Google Scholar 

  74. Bhagwandin VJ, Hau LW, Mallen-St Clair J, Wolters PJ, Caughey GH (2003) Structure and activity of human pancreasin, a novel tryptic serine peptidase expressed primarily by the pancreas. J Biol Chem 278:3363–3371

    PubMed  CAS  Article  Google Scholar 

  75. Carey MC, Hernell O (1992) Digestion and absorption of fat. Semin Gastrointest Dis 3:189–208

    Google Scholar 

  76. Tyssandier V, Reboul E, Dumas JF, Bouteloup-Demange C, Armand M, Marcand J, et al. (2003) Processing of vegetable-borne carotenoids in the human stomach and duodenum. Am J Physiol Gastrointest Liver Physiol 284:G913–923

    PubMed  CAS  Google Scholar 

  77. Gunstone F (1996) Fatty acid and lipid chemistry. Blackie Academic & Professional, London

    Google Scholar 

  78. Glass RL, Troolin HA, Jenness R (1967) Comparative biochemical studies of milks. IV. Constituent fatty acids of milk fats. Comp Biochem Physiol 22:415–425

    PubMed  CAS  Article  Google Scholar 

  79. Breckenridge WC, Marai L, Kuksis A (1969) Triglyceride structure of human milk fat. Can J Biochem 47:761–769

    PubMed  CAS  Article  Google Scholar 

  80. Freeman CP, Jack EL, Smith LM (1965) Intramolecular fatty acid distribution in the milk fat triglycerides of several species. J Dairy Sci 48:853–858

    PubMed  CAS  Google Scholar 

  81. Moreau H, Laugier R, Gargouri Y, Ferrato F, Verger R (1988) Human preduodenal lipase is entirely of gastric fundic origin. Gastroenterology 95:1221–1226

    PubMed  CAS  Google Scholar 

  82. Carriere F, Barrowman JA, Verger R, Laugier R (1993) Secretion and contribution to lipolysis of gastric and pancreatic lipases during a test meal in humans. Gastroenterology 105:876–888

    PubMed  CAS  Google Scholar 

  83. Scheele G, Bartelt D, Bieger W (1981) Characterization of human exocrine pancreatic proteins by two-dimensional isoelectric focusing/sodium dodecyl sulfate gel electrophoresis. Gastroenterology 80:461–473

    PubMed  CAS  Google Scholar 

  84. DiMagno EP, Go VL, Summerskill WH (1973) Relations between pancreatic enzyme ouputs and malabsorption in severe pancreatic insufficiency. N Engl J Med 288:813–815

    PubMed  CAS  Article  Google Scholar 

  85. Bodmer MW, Angal S, Yarranton GT, Harris TJ, Lyons A, King DJ, et al. (1987) Molecular cloning of a human gastric lipase and expression of the enzyme in yeast. Biochim Biophys Acta 909:237–244

    PubMed  CAS  Google Scholar 

  86. Roussel A, Canaan S, Egloff MP, Riviere M, Dupuis L, Verger R, et al. (1999) Crystal structure of human gastric lipase and model of lysosomal acid lipase, two lipolytic enzymes of medical interest. J Biol Chem 274:16995–17002

    PubMed  CAS  Article  Google Scholar 

  87. Paltauf F, Wagner E (1976) Stereospecificity of lipases. Enzymatic hydrolysis of enantiomeric alkyldiacyl- and dialkylacylglycerols by lipoprotein lipase. Biochim Biophys Acta 431:359–362

    PubMed  CAS  Google Scholar 

  88. Gargouri Y, Moreau H, Verger R (1989) Gastric lipases: biochemical and physiological studies. Biochim Biophys Acta 1006:255–271

    PubMed  CAS  Google Scholar 

  89. Pafumi Y, Lairon D, de la Porte PL, Juhel C, Storch J, Hamosh M, et al. (2002) Mechanisms of inhibition of triacylglycerol hydrolysis by human gastric lipase. J Biol Chem 277:28070–28079

    PubMed  CAS  Article  Google Scholar 

  90. Armand M, Borel P, Dubois C, Senft M, Peyrot J, Salducci J, et al. (1968) Characterization of emulsions and lipolysis of dietary lipids in the human stomach. Am J Physiol 266:G372–381

    Google Scholar 

  91. Armand M, Borel P, Pasquier B, Dubois C, Senft M, Andre M, et al. (1996) Physicochemical characteristics of emulsions during fat digestion in human stomach and duodenum. Am J Physiol 271:G172–183

    PubMed  CAS  Google Scholar 

  92. Armand M, Pasquier B, Andre M, Borel P, Senft M, Peyrot J, et al. (1999) Digestion and absorption of 2 fat emulsions with different droplet sizes in the human digestive tract. Am J Clin Nutr 70:1096–1106

    PubMed  CAS  Google Scholar 

  93. Gargouri Y, Pieroni G, Riviere C, Lowe PA, Sauniere JF, Sarda L, et al. (1986) Importance of human gastric lipase for intestinal lipolysis: an in vitro study. Biochim Biophys Acta 879:419–423

    PubMed  CAS  Google Scholar 

  94. Borel P, Armand M, Pasquier B, Senft M, Dutot G, Melin C, et al. (1968) Digestion and absorption of tube-feeding emulsions with different droplet sizes and compositions in the rat. JPEN J Parenter Enteral Nutr 18:534–543

    Google Scholar 

  95. Armand M, Hamosh M, Mehta NR, Angelus PA, Philpott JR, Henderson TR, et al. (1996) Effect of human milk or formula on gastric function and fat digestion in the premature infant. Pediatr Res 40:429–437

    PubMed  CAS  Article  Google Scholar 

  96. Abrams CK, Hamosh M, Dutta SK, Hubbard VS, Hamosh P (1987) Role of nonpancreatic lipolytic activity in exocrine pancreatic insufficiency. Gastroenterology 92:125–129

    PubMed  CAS  Google Scholar 

  97. Abrams CK, Hamosh M, Hubbard VS, Dutta SK, Hamosh P (1984) Lingual lipase in cystic fibrosis. Quantitation of enzyme activity in the upper small intestine of patients with exocrine pancreatic insufficiency. J Clin Invest 73:374–382

    PubMed  CAS  Google Scholar 

  98. Roulet M, Weber AM, Paradis Y, Roy CC, Chartrand L, Lasalle R, et al. (1980) Gastric emptying and lingual lipase activity in cystic fibrosis. Pediatr Res 14:1360–1362

    PubMed  CAS  Article  Google Scholar 

  99. Roy CC, Roulet M, Lefebvre D, Chartrand L, Lepage G, Fournier LA (1979) The role of gastric lipolysis on fat absorption and bile acid metabolism in the rat. Lipids 14:811–15

    PubMed  CAS  Article  Google Scholar 

  100. Carriere F, Grandval P, Renou C, Palomba A, Prieri F, Giallo J, et al. (2005) Quantitative study of digestive enzyme secretion and gastrointestinal lipolysis in chronic pancreatitis. Clin Gastroenterol Hepatol 3:28–38

    PubMed  CAS  Article  Google Scholar 

  101. Sbarra V, Mas E, Henderson TR, Hamosh M, Lombardo D, Hamosh P (1996) Digestive lipases of the newborn ferret: compensatory role of milk bile salt-dependent lipase. Pediatr Res 40:263–268

    PubMed  CAS  Article  Google Scholar 

  102. Staggers JE, Fernando-Warnakulasuriya GJP, Wells MA (1981) Studies on fat digestion, absorption, and transport in the suckling rat. II. triacylglycerols: molecular species, sterospecific analysis, and specificity of hydrolysis by lingual lipase. J Lipid Res 22:675–679

    PubMed  CAS  Google Scholar 

  103. Gregory P, Tabeling R, Kamphues J (1999) Growth and digestion in pancreatic duct ligated pigs. In: Pierzynowski S, Zabielski R (eds) Biology of the pancreas in growing animals. Elsevier Science, New York, pp 381–393

    Google Scholar 

  104. Tabeling R, Gregory P, Kamphues J (1999) Studies on nutrient digestibilities (precaecal and total) in pancreatic duct ligated pigs and the effects of enzyme substitution. Journal of Animal Physiology and Animal Nutrition 82:251–263

    Article  Google Scholar 

  105. Lowe ME (2002) The triglyceride lipases of the pancreas. J Lipid Res 43:2007–2016

    PubMed  CAS  Article  Google Scholar 

  106. Lowe ME, Rosenblum JL, Strauss AW (1989) Cloning and characterization of human pancreatic lipase cDNA. J Biol Chem 264:20042–20048

    PubMed  CAS  Google Scholar 

  107. Payne RM, Sims HF, Jennens ML, Lowe ME (1968) Rat pancreatic lipase and two related proteins: enzymatic properties and mRNA expression during development. Am J Physiol 266:G914–G921

    Google Scholar 

  108. Lebenthal E, Lee PC (1980) Development of functional response in human exocrine pancreas. Pediatrics 66:556–560

    PubMed  CAS  Google Scholar 

  109. Yang Y, Lowe ME (1998) Human pancreatic triglyceride lipase expressed in yeast cells: purification and characterization. Protein Expr Purif 13:36–40

    PubMed  CAS  Article  Google Scholar 

  110. De Caro A, Figarella C, Amic J, Michel R, Guy O (1977) Human pancreatic lipase: A glycoprotein. Biochim Biophys Acta 490:411–419

    PubMed  CAS  Google Scholar 

  111. Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, et al. (1992) The alpha/beta hydrolase fold. Protein Eng 5:197–211

    PubMed  CAS  Article  Google Scholar 

  112. Winkler FK, D’Arcy A, Hunziker W (1990) Structure of human pancreatic lipase. Nature 343:771–774

    PubMed  CAS  Article  Google Scholar 

  113. Lowe ME (1992) The catalytic site residues and interfacial binding of human pancreatic lipase. J Biol Chem 267:17069–17073

    PubMed  CAS  Google Scholar 

  114. van Tilbeurgh H, Egloff MP, Martinez C, Rugani N, Verger R, Cambillau C (1993) Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by x-ray crystallography. Nature 362:814–820

    PubMed  CAS  Article  Google Scholar 

  115. Andersson L, Carriere F, Lowe ME, Nilsson A, Verger R (1996) Pancreatic lipase-related protein 2 but not classical pancreatic lipase hydrolyzes galactolipids. Biochim Biophys Acta 1302:236–240

    PubMed  Google Scholar 

  116. Verger R (1984) Pancreatic lipase. In: Borgstrom B, Brockman HL (eds) Lipases, 1st edn. Elsevier, Amsterdam, pp 84–150

    Google Scholar 

  117. van Bennekum AM, Fisher EA, Blaner WS, Harrison EH (2000) Hydrolysis of retinyl esters by pancreatic triglyceride lipase. Biochemistry 39:4900–4906

    PubMed  CAS  Article  Google Scholar 

  118. Yang LY, Kuksis A, Myher JJ (1990) Lipolysis of menhaden oil triacylglycerols and the corresponding fatty acid alkyl esters by pancreatic lipase in vitro: a reexamination. J Lipid Res 31:137–147

    PubMed  CAS  Google Scholar 

  119. Borgstrom B, Erlanson-Albertsson C (1984) Pancreatic colipase. In: Borgstrom B, Brockman HL (eds) Lipases, 1st edn. Elsevier, Amsterdam, pp 152–183

    Google Scholar 

  120. Sternby B, Borgstrom B (1984) One-step purification of procolipase from human pancreatic juice by immobilized antibodies against human colipase. Biochim Biophys Acta 786:109–112

    PubMed  CAS  Google Scholar 

  121. Lowe ME, Rosenblum JL, McEwen P, Strauss AW (1990) Cloning and characterization of the human colipase cDNA. Biochemistry 29:823–828

    PubMed  CAS  Article  Google Scholar 

  122. van Tilbeurgh H, Gargouri Y, Dezan C, Egloff MP, Nesa MP, Ruganie N, et al. (1993) Crystallization of pancreatic procolipase and of its complex with pancreatic lipase. J Mol Biol 229:552–554

    PubMed  CAS  Article  Google Scholar 

  123. Figarella C, De Caro A, Leupold D, Poley JR (1980) Congenital pancreatic lipase deficiency. J Pediatr 96:412–416

    PubMed  CAS  Article  Google Scholar 

  124. Hegele RA, Ramdath DD, Ban MR, Carruthers MN, Carrington CV, Cao H (2001) Polymorphisms in PNLIP, encoding pancreatic lipase, and associations with metabolic traits. J Hum Genet 46:320–324

    PubMed  CAS  Article  Google Scholar 

  125. Carriere F, Renou C, Lopez V, De Caro J, Ferrato F, Lengsfeld H, et al. (2000) The specific activities of human digestive lipases measured from the in vivo and in vitro lipolysis of test meals. Gastroenterology 119:1689–1660

    Article  Google Scholar 

  126. Hildebrand H, Borgstrom B, Bekassy A, Erlanson-Albertsson C, Helin A (1982) Isolated colipase deficiency in two brothers. Gut 23:243–246

    PubMed  CAS  Article  Google Scholar 

  127. Huggins KW, Camarota LM, Howles PN, Hui DY (2003) Pancreatic triglyceride lipase deficiency minimally affects dietary fat absorption but dramatically decreases dietary cholesterol absorption in mice. J Biol Chem 278:42899–42905

    PubMed  CAS  Article  Google Scholar 

  128. Sebban-Kreuzer C, Ayvazian L, Juhel C, Salles JP, Chapus C, Kerfelec B (2003) Inhibitory effect of the pancreatic lipase C-terminal domain on intestinal lipolysis in rats fed a high-fat diet: chronic study. Int J Obes Relat Metab Disord 27:319–325

    PubMed  CAS  Article  Google Scholar 

  129. Ayvazian L, Kerfelec B, Granon S, Foglizzo E, Crenon I, Dubois C, et al. (2001) The lipase C-terminal domain. A novel unusual inhibitor of pancreatic lipase activity. J Biol Chem 276:14014–14018

    PubMed  CAS  Google Scholar 

  130. D’Agostino D, Cordle RA, Kullman J, Erlanson-Albertsson C, Muglia LJ, Lowe ME (2002) Decreased postnatal survival and altered body weight regulation in procolipase deficient mice. J Biol Chem 277:7170–7177

    PubMed  CAS  Article  Google Scholar 

  131. Hide WA, Chan L, Li W-H (1992) Structure and evolution of the lipase superfamily. J Lipid Res 33:167–178

    PubMed  CAS  Google Scholar 

  132. Yang Y, Sanchez D, Figarella C, Lowe ME (2000) Discoordinate expression of pancreatic lipase and two related proteins in the human fetal pancreas. Pediatr Res 47:184–188

    PubMed  CAS  Article  Google Scholar 

  133. De Caro J, Sias B, Grandval P, Ferrato F, Halimi H, Carriere F, et al. (2004) Characterization of pancreatic lipase-related protein 2 isolated from human pancreatic juice. Biochim Biophys Acta 1701:89–99

    PubMed  CAS  Google Scholar 

  134. De Caro J, Carriere F, Barboni P, Giller T, Verger R, De Caro A (1998) Pancreatic lipase-related protein 1 (PLRP1) is present in the pancreatic juice of several species. Biochim Biophys Acta 1387:331–341

    Google Scholar 

  135. Giller T, Buchwald P, Blum-Kaelin D, Hunziker W (1992) Two novel human pancreatic lipase related proteins, hPLRP1 and hPLRP2: differences in colipase dependency and in lipase activity. J Biol Chem 267:16509–16516

    PubMed  CAS  Google Scholar 

  136. Roussel A, Yang Y, Ferrato F, Verger R, Cambillau C, Lowe M (1998) Structure and activity of rat pancreatic lipase-related protein 2. J Biol Chem 273:32121–32128

    PubMed  CAS  Article  Google Scholar 

  137. Roussel A, deCaro J, Bezzine S, Gastinel L, de Caro A, Carriere F, et al. (1998) Reactivation of the totally inactive pancreatic lipase RP1 by structure-predicted point mutations. Proteins 32:523–531

    PubMed  CAS  Article  Google Scholar 

  138. Crenon I, Foglizzo E, Kerfelec B, Verine A, Pignol D, Hermoso J, et al. (1998) Pancreatic lipase-related protein type I: a specialized lipase or an inactive enzyme. Protein Eng 11:135–142

    PubMed  CAS  Article  Google Scholar 

  139. Sias B, Ferrato F, Grandval P, Lafont D, Boullanger P, De Caro A, et al. (2004) Human pancreatic lipase-related protein 2 is a galactolipase. Biochemistry 43:10138–10148

    PubMed  CAS  Article  Google Scholar 

  140. Gronborg M, Bunkenborg J, Kristiansen TZ, Jensen ON, Yeo CJ, Hruban RH, et al. (2004) Comprehensive proteomic analysis of human pancreatic juice. J Proteome Res 3:1042–1055

    PubMed  CAS  Article  Google Scholar 

  141. Andersson L, Bratt C, Arnoldsson KC, Herslof B, Olsson NU, Sternby B, et al. (1995) Hydrolysis of galactolipids by human pancreatic lipolytic enzymes and duodenal contents. J Lipid Res 36:1392–1400

    PubMed  CAS  Google Scholar 

  142. Lowe ME, Kaplan MH, Jackson-Grusby L, D’Agostino D, Grusby MJ (1998) Decreased neonatal dietary fat absorption and T cell cytotoxicity in pancreatic lipase-related protein 2-deficient mice. J Biol Chem 273:31215–31221

    PubMed  CAS  Article  Google Scholar 

  143. D’Agostino D, Lowe ME (2004) Pancreatic lipase-related protein 2 is the major colipase-dependent pancreatic lipase in suckling mice. J Nutr 134:132–134

    PubMed  CAS  Google Scholar 

  144. Reue K, Zambaux J, Wong H, Lee G, Leete TH, Ronk M, et al. (1991) cDNA cloning of carboxyl ester lipase from human pancreas reveals a unique proline-rich repeat unit. J Lipid Res 32:267–276

    PubMed  CAS  Google Scholar 

  145. Hernell O, Olivecrona T (1974) Human milk lipases. I. Serum-stimulated lipase. J Lipid Res 15:367–374

    PubMed  CAS  Google Scholar 

  146. Hernell O, Olivecrona T (1974) Human milk lipases. II. Bile salt-stimulated lipase. Biochim Biophys Acta 369:234–244

    PubMed  CAS  Google Scholar 

  147. Baba T, Downs D, Jackson KW, Tang J, Wang CS (1991) Structure of human milk bile salt activated lipase. Biochemistry 30:500–510

    PubMed  CAS  Article  Google Scholar 

  148. Nilsson J, Blackberg L, Carlsson P, Enerback S, Hernell O, Bjursell G (1990) cDNA cloning of human-milk bile-salt-stimulated lipase and evidence for its identity to pancreatic carboxylic ester hydrolase. Eur J Biochem 192:543–550

    PubMed  CAS  Article  Google Scholar 

  149. Moore SA, Kingston RL, Loomes KM, Hernell O, Blackberg L, Baker HM, et al. (2001) The structure of truncated recombinant human bile salt-stimulated lipase reveals bile salt-independent conformational flexibility at the active-site loop and provides insights into heparin binding. J Mol Biol 312:511–523

    PubMed  CAS  Article  Google Scholar 

  150. Chen Q, Blackberg L, Nilsson A, Sternby B, Hernell O (1968) Digestion of triacylglycerols containing long-chain polyenoic fatty acids in vitro by colipase-dependent pancreatic lipase and human milk bile salt-stimulated lipase. Biochim Biophys Acta 1210:239–243

    Google Scholar 

  151. Chen Q, Sternby B, Nilsson A (1989) Hydrolysis of triacylglycerol arachidonic and linoleic acid ester bonds by human pancreatic lipase and carboxyl ester lipase. Biochim Biophys Acta 1004:372–385

    PubMed  CAS  Google Scholar 

  152. Hernell O, Blackberg L, Chen Q, Sternby B, Nilsson A (1993) Does the bile salt-stimulated lipase of human milk have a role in the use of milk long-chain polyunsaturated fatty acids? J Pediatr Gastroenterol Nutr 16:426–431

    PubMed  CAS  Article  Google Scholar 

  153. Williamson S, Finucane E, Ellis H, Gamsu HR (1978) Effect of heat treatment of human milk on absorption of nitrogen, fat, sodium, calcium, and phosphorus by preterm infants. Arch Dis Child 53:555–563

    PubMed  CAS  Google Scholar 

  154. Alemi B, Hamosh M, Scanlon JW, Salzman-Mann C, Hamosh P (1981) Fat digestion in very low-birth-weight infants: effect of addition of human milk to low-birth-weight formula. Pediatrics 68:484–489

    PubMed  CAS  Google Scholar 

  155. Howles PN, Stemmerman GN, Fenoglio-Preiser CM, Hui DY (1999) Carboxyl ester lipase activity in milk prevents fat-derived intestinal injury in neonatal mice. Am J Physiol 277:G653–G661

    PubMed  CAS  Google Scholar 

  156. Weng W, Li L, van Bennekum AM, Potter SH, Harrison EH, Blaner WS, et al. (1999) Intestinal absorption of dietary cholesteryl ester is decreased but retinyl ester absorption is normal in carboxyl ester lipase knockout mice. Biochemistry 38:4143–4149

    PubMed  CAS  Article  Google Scholar 

  157. Lombardo D (2001) Bile salt-dependent lipase: its pathophysiological implications. Biochim Biophys Acta 1533:1–28

    PubMed  CAS  Google Scholar 

  158. Kirby RJ, Zheng S, Tso P, Howles PN, Hui DY (2002) Bile salt-stimulated carboxyl ester lipase influences lipoprotein assembly and secretion in intestine. A process mediated via ceramide hydrolysis. J Biol Chem 277:4104–4109

    PubMed  CAS  Article  Google Scholar 

  159. Figarella C, Clemente F, Guy O (1971) A zymogen of phospholipase A in human pancreatic juice. Biochim Biophys Acta 227:213–217

    PubMed  CAS  Google Scholar 

  160. Kozumplik V, Staffa F, Hoffmann GE (1989) Purification of pancreatic phospholipase A2 from human duodenal juice. Biochim Biophys Acta 1002:395–397

    PubMed  CAS  Google Scholar 

  161. Seilhamer JJ, Randall TL, Yamanaka M, Johnson LK (1986) Pancreatic phospholipase A2: isolation of the human gene and cDNAs from porcine pancreas and human lung. DNA 5:519–527

    PubMed  CAS  Google Scholar 

  162. Chen A, Innis S (2004) Assessment of phospholipid malabsorption by quantification of fecal phospholipid. J Pediatr Gastroenterol Nutr 39:85–91

    PubMed  Article  Google Scholar 

  163. Richmond BL, Boileau AC, Zheng S, Huggins KW, Granholm NA, Tso P, et al. (2001) Compensatory phospholipid digestion is required for cholesterol absorption in pancreatic phospholipase A(2)-deficient mice. Gastroenterology 120:1193–1202

    PubMed  CAS  Article  Google Scholar 

  164. Borgstrom B (1980) Importance of phospholipids, pancreatic phospholipase A2, and fatty acid for the digestion of dietary fat: in vitro experiments with the porcine enzymes. Gastroenterology 78:954–962

    PubMed  CAS  Google Scholar 

  165. Borgstrom B, Erlanson-Albertsson C (1982) Hydrolysis of milk fat globules by pancreatic lipase. Role of colipase, phospholipase A2, and bile salts. J Clin Invest 70:30–32

    PubMed  CAS  Article  Google Scholar 

  166. Blackberg L, Hernell O, Olivecrona T (1981) Hydrolysis of human milk fat globules by pancreatic lipase. Role of colipase, phospholipase A2, and bile salts. Journal of Clinical Investigation 67:1748–1752

    PubMed  CAS  Google Scholar 

  167. Bernback S, Blackberg L, Hernell O (1990) The complete digestion of human milk triacylglycerol in vitro requires gastric lipase, pancreatic colipase-dependent lipase, and bile salt-stimulated lipase. Journal of Clinical Investigation 85:1221–1226

    PubMed  CAS  Google Scholar 

  168. Caspary WF (1992) Physiology and pathophysiology of intestinal absorption. Am J Clin Nutr 55(1 Suppl):299S–308S

    PubMed  CAS  Google Scholar 

  169. Greaves JP, Hollingsworth DF (1964) Changes in the pattern of carbohydrate consumption in Britain. Proc Nutr Soc 23:136–143

    PubMed  CAS  Article  Google Scholar 

  170. Nishide T, Emi M, Nakamura Y, Matsubara K (1984) Corrected sequences of cDNAs for human salivary and pancreatic alpha-amylases [corrected]. Gene 28:263–270

    PubMed  CAS  Article  Google Scholar 

  171. Stiefel DJ, Keller PJ (1973) Preparation and some properties of human pancreatic amylase including a comparison with human parotid amylase. Biochim Biophys Acta 302:345–361

    PubMed  CAS  Google Scholar 

  172. Buisson G, Duee E, Haser R, Payan F (1987) Three dimensional structure of porcine pancreatic alpha-amylase at 2.9 A resolution. Role of calcium in structure and activity. EMBO J 6:3909–3916

    PubMed  CAS  Google Scholar 

  173. Seigner C, Prodanov E, Marchis-Mouren G (1987) The determination of subsite binding energies of porcine pancreatic alpha-amylase by comparing hydrolytic activity towards substrates. Biochim Biophys Acta 913:200–209

    PubMed  CAS  Google Scholar 

  174. Robyt JF, French D (1970) The action pattern of porcine pancreatic alpha-amylase in relationship to the substrate binding site of the enzyme. J Biol Chem 245:3917–3927

    PubMed  CAS  Google Scholar 

  175. Robyt JF, French D (1970) Multiple attack and polarity of action of porcine pancreatic alpha-amylase. Arch Biochem Biophys 138:662–670

    PubMed  CAS  Article  Google Scholar 

  176. Saito N, Horiuchi T, Yoshida M, Imai T (1979) Action of human pancreatic and salivary alpha-amylases on maltooligosaccharides: evaluation of kinetic parameters. Clin Chim Acta 97:253–260

    PubMed  CAS  Article  Google Scholar 

  177. Chan Y, Braun PJ, French D, Robyt JF (1984) Porcine pancreatic alpha-amylase hydrolysis of hydroxyethylated amylose and specificity of subsite binding. Biochemistry 23:5795–5800

    PubMed  CAS  Article  Google Scholar 

  178. Braun PJ, French D, Robyt JF (1985) Porcine-pancreatic alpha amylase hydrolysis of substrates containing 6-deoxy-D-glucose and 6-deoxy-6-fluoro-D-glucose and the specificity of subsite binding. Carbohydr Res 143:107–116

    PubMed  CAS  Article  Google Scholar 

  179. Braun PJ, French D, Robyt JF (1985) The effect of substrate modification on porcine pancreatic alpha-amylase subsite binding: hydrolysis of substrates containing 2-deoxy-D-glucose and 2-amino-2-deoxy-D-glucose. Arch Biochem Biophys 242:231–239

    PubMed  CAS  Article  Google Scholar 

  180. Braun PJ, French D, Robyt JF (1985) The effect of substrate modification on binding of porcine pancreatic alpha amylase: hydrolysis of modified amylose containing D-allose residues. Carbohydr Res 141:265–271

    PubMed  CAS  Article  Google Scholar 

  181. Alpers DH (1994) Digestion and absorption of carbohydrates and proteins. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Raven Press, New York, pp 1723–1749

    Google Scholar 

  182. Ladas SD, Giorgiotis K, Raptis SA (1993) Complex carbohydrate malabsorption in exocrine pancreatic insufficiency. Gut 34:984–987

    PubMed  CAS  Article  Google Scholar 

  183. Layer P, Zinsmeister AR, DiMagno EP (1986) Effects of decreasing intraluminal amylase activity on starch digestion and postprandial gastrointestinal function in humans. Gastroenterology 91:41–48

    PubMed  CAS  Google Scholar 

  184. Hiele M, Ghoos Y, Rutgeerts P, Vantrappen G (1989) Starch digestion in normal subjects and patients with pancreatic disease, using a 13CO2 breath test. Gastroenterology 96:503–509

    PubMed  CAS  Google Scholar 

  185. Lankisch PG, Otto J (1986) Salivary isoamylase in duodenal aspirates. Dig Dis Sci 31:1299–1302

    PubMed  CAS  Article  Google Scholar 

  186. Sjolund K, Haggmark A, Ihse I, Skude G, Karnstrom U, Wikander M (1991) Selective deficiency of pancreatic amylase. Gut 32:546–548

    PubMed  CAS  Article  Google Scholar 

  187. Lowe CU, May CD (1951) Selective pancreatic deficiency, absent amylase, diminished trypsin, and normal lipase. AMA Am J Dis Child 82:459–464

    PubMed  CAS  Google Scholar 

  188. Mehta DI, Wang HH, Akins RE, Wang L, Proujansky R (2000) Isolated pancreatic amylase deficiency: probable error in maturation. J Pediatr 136:844–846

    PubMed  CAS  Article  Google Scholar 

  189. Walters MP, Littlewood JM (1998) Faecal bile acid and dietary residue excretion in cystic fibrosis: age group variations. J Pediatr Gastroenterol Nutr 27:296–300

    PubMed  CAS  Article  Google Scholar 

  190. Nordgaard I, Rumessen JJ, Gudmand-Hoyer E (1992) Assimilation of wheat starch in patients with chronic pancreatitis. Positive effect of enzyme replacement. Scand J Gastroenterol 27:412–416

    PubMed  CAS  Google Scholar 

  191. Frederiksen HJ, Mogensen NB, Magid E (1985) The clinical significance of salivary amylase in duodenal aspirates in evaluation of exocrine pancreas function. Scand J Gastroenterol 20:1046–1048

    PubMed  CAS  Google Scholar 

  192. Ramasubbu N, Paloth V, Luo Y, Brayer GD, Levine MJ (1996) Structure of human salivary alpha-amylase at 1.6 A resolution: implications for its role in the oral cavity. Acta Crystallogr D Biol Crystallogr 52:435–446

    PubMed  CAS  Article  Google Scholar 

  193. Lott JA, Lu CJ (1991) Lipase isoforms and amylase isoenzymes: assays and application in the diagnosis of acute pancreatitis. Clin Chem 37:361–368

    PubMed  CAS  Google Scholar 

  194. Karn RC (1978) The comparative biochemistry, physiology, and genetics of animal alpha-amylases. Adv Comp Physiol Biochem 7:1–103

    PubMed  CAS  Google Scholar 

  195. Hoebler C, Karinthi A, Devaux MF, Guillon F, Gallant DJ, Bouchet B, et al. (1998) Physical and chemical transformations of cereal food during oral digestion in human subjects. Br J Nutr 80:429–436

    PubMed  CAS  Article  Google Scholar 

  196. Murray RD, Kerzner B, Sloan HR, McClung HJ, Gilbert M, Ailabouni A (1986) The contribution of salivary amylase to glucose polymer hydrolysis in premature infants. Pediatr Res 20:186–191

    PubMed  CAS  Article  Google Scholar 

  197. Kurahashi M, Inomata K (1989) Role of parotid amylase in starch digestion in the gastro-intestinal tracts of diabetic rats. J Dent Res 68:1366–1369

    PubMed  CAS  Google Scholar 

  198. Kurahashi M, Inomata K (1999) Effects of dietary consistency and water content on parotid amylase secretion and gastric starch digestion in rats. Arch Oral Biol 44:1013–1019

    PubMed  CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Whitcomb.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Whitcomb, D.C., Lowe, M.E. Human Pancreatic Digestive Enzymes. Dig Dis Sci 52, 1–17 (2007). https://doi.org/10.1007/s10620-006-9589-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-006-9589-z

Keywords

  • Trypsin
  • Elastase
  • Lipase
  • Amylase
  • Co-lipase