Digestive Diseases and Sciences

, Volume 52, Issue 1, pp 1–17 | Cite as

Human Pancreatic Digestive Enzymes

  • David C. Whitcomb
  • Mark E. Lowe
Original Paper


A primary function of the pancreas is to produce digestive enzymes that are delivered to the small intestine for the hydrolysis of complex nutrients. Much of our understanding of digestive enzymes comes from studies in animals. New technologies and the availability of the sequence of the human genome allow for a critical review of older reports and assumptions based on animal studies. This report updates our understanding of human pancreatic digestive enzymes with a focus on new insights into the biology of human proteases, lipases and amylases.


Trypsin Elastase Lipase Amylase Co-lipase 


  1. 1.
    Rothman SS (1977) The digestive enzymes of the pancreas: a mixture of inconsistent proportions. Ann Rev Physiol 39:373–389CrossRefGoogle Scholar
  2. 2.
    Schmitz J (2004) Maldigestion and malabsorption. In: Walker WA, Goulet O, Kleinman RE, Sherman PM, Shneider BL, Sanderson IR (eds) Pediatric Gastrointestinal Disease: Pathophysiology, Diagnosis, Management. Decker, Hamilton, Canada, pp 8–20Google Scholar
  3. 3.
    Bohak Z (1969) Purification and characterization of chicken pepsinogen and chicken pepsin. J Biol Chem 244:4638–4648PubMedGoogle Scholar
  4. 4.
    Tabeling R, Gregory P, Kamphues J (1999) Studies on nutrient digestibilities (pre-caecal and total) in pancreatic duct ligated pigs and the effects of enzyme substitution. J Anim Physiol Anim Nutr 82:251–263CrossRefGoogle Scholar
  5. 5.
    Gregory PC (1999) Growth and digestion in pancreatic duct ligated pigs. Effect of enzyme supplementation. In: Pierzynowski SG, Zabielski R (eds) Biology of the Pancreas in Growing Animals. Elsevier Science, New York, pp 381–393Google Scholar
  6. 6.
    Farrell JJ (2002) Digestion and absorption of nutrients and vitamins. In: Feldman M, Friedman LS, Sleisenger MH (eds) Sleisenger & Fortran's Gastrointestinal and Liver Disease. Saunders, Philadelphia, pp 1715–1750Google Scholar
  7. 7.
    Whitcomb DC (1999) Early trypsinogen activation in acute pancreatitis. Gastroenterology 116:770–773Google Scholar
  8. 8.
    Whitcomb DC (2000) Genetic predispositions to acute and chronic pancreatitis. Med Clin North Am 84:531–547PubMedCrossRefGoogle Scholar
  9. 9.
    Ghelis C, Tempete-Gaillourdet M, Yon JM (1978) The folding of pancreatic elastase: independent domain refolding and inter-domain interaction. Biochem Biophys Res Commun 84:31–36PubMedCrossRefGoogle Scholar
  10. 10.
    Hubbard S, Eisenmenger F, Thornton (1994) Modeling studies of the change in conformation required for cleavage of limited proteolytic sites. Protein Sci 3:757–768PubMedGoogle Scholar
  11. 11.
    Rinderknecht H, Renner IG, Carmack C (1979) Trypsinogen variants in pancreatic juice of healthy volunteers, chronic alcoholics, and patients with pancreatitis and cancer of the pancreas. Gut 20:886–891PubMedCrossRefGoogle Scholar
  12. 12.
    Figarella C, Clemente F, Guy O (1969) On zymogens of the human pancreatic juice. FEBS Lett 3:351–353PubMedCrossRefGoogle Scholar
  13. 13.
    Scheele G, Bartelt D, Bieger W (1981) Characterization of human exocrine pancreatic proteins by two-dimensional isoelectric focusing/sodium dodecyl sulfate gel electrophoresis. Gastroenterology 80:461–473PubMedGoogle Scholar
  14. 14.
    Emi M, Nakamura Y, Ogawa M, Yamamoto T, Nishide T, Mori T, et al. (1986) Cloning, characterization and nucleotide sequences of two cDNAs encoding human pancreatic trypsinogens. Gene 41:305–310PubMedCrossRefGoogle Scholar
  15. 15.
    Rowen L, Koop BF, Hood L (1996) The complete 685-kilobase DNA sequence of the human beta T cell receptor locus. Science 272:1755–1762PubMedCrossRefGoogle Scholar
  16. 16.
    Chen J-M, Férec C (2004) Human trypsins. In: Earret AJ, Rawlings ND, Woessner JF (eds) Handbook of Proteolytic Enzymes. Elsevier, London, pp 1489–1493Google Scholar
  17. 17.
    Rinderknecht H, Stace NH, Renner IG (1985) Effects of chronic alcohol abuse on exocrine pancreatic secretion in man. Dig Dis Sci 30:65–71PubMedCrossRefGoogle Scholar
  18. 18.
    Kukor Z, Tóth M, Sahin-Tóth M (2003) Human anionic trypsinogen. Eur J Biochem 270:2047–2058PubMedCrossRefGoogle Scholar
  19. 19.
    Liebermann J, Petersson U, Marks WH, Borgstrom A (1998) The ratio between mRNA's for anionic and cationic trypsinogens does not change during acute experimental pancreatitis. Pancreas 17:446Google Scholar
  20. 20.
    Colomb E, Figarella C (1979) Comparative studies on the mechanism of activation of the two human trypsinogens. Biochem Biophys Acta 571:343–351PubMedGoogle Scholar
  21. 21.
    Rinderknecht H, Renner IG, Abramson SB, Carmack C (1984) Mesotrypsin: a new inhibitor-resistant protease from a zymogen in human pancreatic tissue and fluid. Gastroenterology 86:681–692PubMedGoogle Scholar
  22. 22.
    Nyaruhucha CN, Kito M, Fukuoka SI (1997) Identification and expression of the cDNA-encoding human mesotrypsin(ogen), an isoform of trypsin with inhibitor resistance. J Biol Chem 272:10573–10578PubMedCrossRefGoogle Scholar
  23. 23.
    Kitamoto Y, Yuan X, Wu Q, McCourt DW, Sadler JE (1994) Enterokinase, the initiator of intestinal digestion, is a mosaic protease composed of a distinctive assortment of domains. Proc Natl Acad Sci U S A 91:7588–7592PubMedCrossRefGoogle Scholar
  24. 24.
    Stroud RM, Kossiakoff AA, Chambers JL (1977) Mechanisms of zymogen activation. Annu Rev Biophys Bioeng 6:177–193PubMedCrossRefGoogle Scholar
  25. 25.
    Delaage M, Lazdunski M (1967) The binding of Ca2+ to trypsinogen and its relation to the mechanism of activation. Biochem Biophys Res Commun 28:390–394PubMedCrossRefGoogle Scholar
  26. 26.
    Bennett WS, Huber R (1984) Structural and functional aspects of domain motions in proteins. CRC Crit Rev Biochem 15:291–384PubMedGoogle Scholar
  27. 27.
    Kukor Z, Tóth M, Pal G, Sahin-Tóth M (2002) Human cationic trypsinogen. Arg(117) is the reactive site of an inhibitory surface loop that controls spontaneous zymogen activation. J Biol Chem 277:6111–6117PubMedCrossRefGoogle Scholar
  28. 28.
    Maroux S, Rovery M, Desnuelle P (1967) An autolyzed and still active form of bovine trypsin. Biochim Biophys Acta 140:377–380PubMedGoogle Scholar
  29. 29.
    Schroeder DD, Shaw E (1968) Chromatography of trypsin and its derivatives. Characterization of a new active form of bovine trypsin. J Biol Chem 243:2943–2949PubMedGoogle Scholar
  30. 30.
    Rovery M (1988) Limited proteolysis in pancreatic chymotrypsinogens and trypsinogens. Biochimie 70:1131–1135PubMedCrossRefGoogle Scholar
  31. 31.
    Varallyay E, Pal G, Patthy A, Szilagyi L, Graf L (1998) Two mutations in rat trypsin confer resistance against autolysis. Biochem Biophys Res Commun 243:56–60PubMedCrossRefGoogle Scholar
  32. 32.
    Simon P, Weiss FU, Sahin-Tóth M, Parry M, Nayler O, Lenfers B, et al. (2001) Hereditary pancreatitis caused by a novel PRSS1 mutation (Arg-122→Cys) that alters autoactivation and autodegradation of cationic trypsinogen. J Biol Chem 21:21Google Scholar
  33. 33.
    Whitcomb DC (2004) Advances in understanding the mechanisms leading to chronic pancreatitis. Nat Clin Pract Gastroenterol Hepatol 1:46–52PubMedCrossRefGoogle Scholar
  34. 34.
    Whitcomb DC (2004) Value of genetic testing in management of pancreatitis. Gut 53:1710–1717PubMedCrossRefGoogle Scholar
  35. 35.
    Figarella C, Miszczuk-Jamska B, Barrett AJ (1988) Possible lysosomal activation of pancreatic zymogens. Activation of both human trypsinogens by cathepsin B and spontaneous acid activation of human trypsinogen 1. Biol Chem Hoppe-Seylers 369(Suppl):293–298Google Scholar
  36. 36.
    Lerch MM, Gorelick FS (2000) Early trypsinogen activation in acute pancreatitis. Med Clin North Am 84:549–563PubMedCrossRefGoogle Scholar
  37. 37.
    Kukor Z, Mayerle J, Kruger B, Toth M, Steed PM, Halangk W, Lerch MM, Sahin-Toth M (2002) Presence of cathepsin B in the human pancreatic secretory pathway and its role in trypsinogen activation during hereditary pancreatitis. J Biol Chem 277:21389–21396PubMedCrossRefGoogle Scholar
  38. 38.
    Klonowski-Stumpe H, Luthen R, Han B, Sata N, Haussinger D, Niederau C (1998) Inhibition of cathepsin B does not affect the intracellular activation of trypsinogen by cerulein hyperstimulation in isolated rat pancreatic acinar cells. Pancreas 16:96–101PubMedCrossRefGoogle Scholar
  39. 39.
    Halangk W, Lerch MM, Brandt-Nedelev B, Roth W, Ruthenbuerger M, Reinheckel T, et al. (2000) Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis. J Clin Invest 106:773–781PubMedGoogle Scholar
  40. 40.
    Mithofer K, Fernandez-Del Castillo C, Rattner DW, Warshaw AL (1998) Subcellular kinetics of early trypsinogen activation in acute rodent pancreatitis. Am J Physiol 274:G71–G79PubMedGoogle Scholar
  41. 41.
    Gorry MC, Gabbaizedeh D, Furey W, Gates LK Jr, Preston RA, Aston CE, et al. (1997) Mutations in the cationic trypsinogen gene are associated with recurrent acute and chronic pancreatitis. Gastroenterology 113:1063–1068PubMedCrossRefGoogle Scholar
  42. 42.
    Witt H, Luck W, Becker M (1999) A signal peptide cleavage site mutation in the cationic trypsinogen gene is strongly associated with chronic pancreatitis. Gastroenterology 117:7–10PubMedCrossRefGoogle Scholar
  43. 43.
    Whitcomb DC, Gorry MC, Preston RA, Furey W, Sossenheimer MJ, Ulrich CD, et al. (1996) Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene. Nat Genet 14:141–145PubMedCrossRefGoogle Scholar
  44. 44.
    Pfützer R, Myers E, Applebaum-Shapiro S, Finch R, Ellis I, Neoptolemos J, et al. (2002) Novel cationic trypsinogen (PRSS1) N29T and R122C mutations cause autosomal dominant hereditary pancreatitis. Gut 50:271–272PubMedCrossRefGoogle Scholar
  45. 45.
    Frick TW, Fernandez, del CC, Bimmler D, Warshaw AL (1997) Elevated calcium and activation of trypsinogen in rat pancreatic acini. Gut 41:339–343PubMedCrossRefGoogle Scholar
  46. 46.
    Sutton R, Criddle D, Raraty MG, Tepikin A, Neoptolemos JP, Petersen OH (2003) Signal transduction, calcium and acute pancreatitis. Pancreatology 3:497–505PubMedCrossRefGoogle Scholar
  47. 47.
    Bishop MD, Freedman SD, Zielenski J, Ahmed N, Dupuis A, Martin S, et al. (2005) The cystic fibrosis transmembrane conductance regulator gene and ion channel function in patients with idiopathic pancreatitis. Hum Genet 118:372–381PubMedCrossRefGoogle Scholar
  48. 48.
    Alazmi WM, Fogel EL, Schmidt S, Watkins JL, McHenry L, Sherman S, et al. (2006) ERCP findings in idiopathic pancreatitis: patients who are cystic fibrosis gene positive and negative. Gastrointest Endosc 63:234–239PubMedCrossRefGoogle Scholar
  49. 49.
    Whitcomb DC (2006) Clinical practice. Acute pancreatitis. N Engl J Med 354:2142–2150PubMedCrossRefGoogle Scholar
  50. 50.
    Ossovskaya VS, Bunnett NW (2004) Protease-activated receptors: contribution to physiology and disease. Physiol Rev 84:579–621PubMedCrossRefGoogle Scholar
  51. 51.
    Namkung W, Han W, Luo X, Muallem S, Cho KH, Kim KH, et al. (2004) Protease-activated receptor 2 exerts local protection and mediates some systemic complications in acute pancreatitis. Gastroenterology 126:1844–1859PubMedCrossRefGoogle Scholar
  52. 52.
    Vergnolle N (2005) Clinical relevance of proteinase activated receptors (pars) in the gut. Gut 54:867–874Google Scholar
  53. 53.
    Hansen KK, Sherman PM, Cellars L, Andrade-Gordon P, Pan Z, Baruch A, et al. (2005) A major role for proteolytic activity and proteinase-activated receptor-2 in the pathogenesis of infectious colitis. Proc Natl Acad Sci USA 102:8363–8368PubMedCrossRefGoogle Scholar
  54. 54.
    Cottrell GS, Amadesi S, Grady EF, Bunnett NW (2004) Trypsin IV, a novel agonist of protease-activated receptors 2 and 4. J Biol Chem 279:13532–13539PubMedCrossRefGoogle Scholar
  55. 55.
    Layer P, Go VL, DiMagno EP (1986) Fate of pancreatic enzymes during small intestinal aboral transit in humans. Am J Physiol 251:G475–480PubMedGoogle Scholar
  56. 56.
    Carrere J, Figarella C, Guy O, Thouvenot JP (1986) Human pancreatic chymotrypsinogen A: a non-competitive enzyme immunoassay, and molecular forms in serum and amniotic fluid. Biochim Biophys Acta 883:46–53PubMedGoogle Scholar
  57. 57.
    Birktoft JJ, Blow DM, Henderson R, Steitz TA (1970) I. Serine proteinases. The structure of alpha-chymotrypsin. Philos Trans R Soc Lond B Biol Sci 257:67–76PubMedCrossRefGoogle Scholar
  58. 58.
    Kardos J, Bodi A, Zavodszky P, Venekei I, Graf L (1999) Disulfide-linked propeptides stabilize the structure of zymogen and mature pancreatic serine proteases. Biochemistry 38:12248–12257PubMedCrossRefGoogle Scholar
  59. 59.
    Appelt G, Schulze B, Rogos R, Kopperschlager G (1988) Analysis of human exocrine pancreatic proteins by means of pore gradient polyacrylamide gel electrophoresis. Biomed Biochim Acta 47:133–140PubMedGoogle Scholar
  60. 60.
    Tomita N, Izumoto Y, Horii A, Doi S, Yokouchi H, Ogawa M, et al. (1989) Molecular cloning and nucleotide sequence of human pancreatic prechymotrypsinogen cDNA. Biochem Biophys Res Commun 158:569–575PubMedCrossRefGoogle Scholar
  61. 61.
    Reseland JE, Larsen F, Solheim J, Eriksen JA, Hanssen LE, Prydz H (1997) A novel human chymotrypsin-like digestive enzyme. J Biol Chem 272:8099–8104PubMedCrossRefGoogle Scholar
  62. 62.
    Tomomura A, Akiyama M, Itoh H, Yoshino I, Tomomura M, Nishii Y, et al. (1996) Molecular cloning and expression of human caldecrin. FEBS Lett 386:26–28PubMedCrossRefGoogle Scholar
  63. 63.
    Yoshino-Yasuda I, Kobayashi K, Akiyama M, Itoh H, Tomomura A, Saheki T (1998) Caldecrin is a novel-type serine protease expressed in pancreas, but its homologue, elastase IV, is an artifact during cloning derived from caldecrin gene. J Biochem (Tokyo) 123:546–554Google Scholar
  64. 64.
    Rosenbloom J (1984) Elastin: relation of protein and gene structure to disease. Lab Invest 51:605–623PubMedGoogle Scholar
  65. 65.
    Rose SD, MacDonald RJ (1997) Evolutionary silencing of the human elastase I gene (ELA1). Hum Mol Genet 6:897–903PubMedCrossRefGoogle Scholar
  66. 66.
    Kawashima I, Tani T, Shimoda K, Takiguchi Y (1987) Characterization of pancreatic elastase II cDNAs: two elastase II mRNAs are expressed in human pancreas. DNA 6:163–172PubMedGoogle Scholar
  67. 67.
    Walkowiak J, Herzig KH, Strzykala K, Przyslawski J, Krawczynski M (2002) Fecal elastase-1 is superior to fecal chymotrypsin in the assessment of pancreatic involvement in cystic fibrosis. Pediatrics 110:e7PubMedCrossRefGoogle Scholar
  68. 68.
    Gullo L, Ventrucci M, Tomassetti P, Migliori M, Pezzilli R (1999) Fecal elastase 1 determination in chronic pancreatitis. Dig Dis Sci 44:210–213PubMedCrossRefGoogle Scholar
  69. 69.
    Dominguez-Munoz JE, Hieronymus C, Sauerbruch T, Malfertheiner P (1995) Fecal elastase test: evaluation of a new noninvasive pancreatic function test. Am J Gastroenterol 90:1834–1837PubMedGoogle Scholar
  70. 70.
    Amann ST, Bishop M, Curington C, Toskes PP (1996) Fecal pancreatic elastase 1 is inaccurate in the diagnosis of chronic pancreatitis. Pancreas 13:226–230PubMedCrossRefGoogle Scholar
  71. 71.
    Hardt PD, Hauenschild A, Nalop J, Marzeion AM, Porsch-Ozcurumez M, Luley C, et al. (2003) The commercially available ELISA for pancreatic elastase 1 based on polyclonal antibodies does measure an as yet unknown antigen different from purified elastase 1. Binding studies and clinical use in patients with exocrine pancreatic insufficiency. Z Gastroenterol 41:903–906PubMedCrossRefGoogle Scholar
  72. 72.
    Pezzilli R, Morselli-Labate AM, Palladoro F, Campana D, Piscitelli L, Tomassetti P, et al. (2005) The ELISA fecal elastase-1 polyclonal assay reacts with different antigens than those of the monoclonal assay. Pancreas 31:200–201PubMedCrossRefGoogle Scholar
  73. 73.
    Rinderknecht H (1993) Pancreatic secretory enzymes. In: Go VLW, DiMagno EP, Gardner JD, Lebenthal E, Reber HA, Scheele GA (eds) The pancreas: Biology, pathobiology, and disease, 2nd edn. Raven Press, New York, pp 219–251Google Scholar
  74. 74.
    Bhagwandin VJ, Hau LW, Mallen-St Clair J, Wolters PJ, Caughey GH (2003) Structure and activity of human pancreasin, a novel tryptic serine peptidase expressed primarily by the pancreas. J Biol Chem 278:3363–3371PubMedCrossRefGoogle Scholar
  75. 75.
    Carey MC, Hernell O (1992) Digestion and absorption of fat. Semin Gastrointest Dis 3:189–208Google Scholar
  76. 76.
    Tyssandier V, Reboul E, Dumas JF, Bouteloup-Demange C, Armand M, Marcand J, et al. (2003) Processing of vegetable-borne carotenoids in the human stomach and duodenum. Am J Physiol Gastrointest Liver Physiol 284:G913–923PubMedGoogle Scholar
  77. 77.
    Gunstone F (1996) Fatty acid and lipid chemistry. Blackie Academic & Professional, LondonGoogle Scholar
  78. 78.
    Glass RL, Troolin HA, Jenness R (1967) Comparative biochemical studies of milks. IV. Constituent fatty acids of milk fats. Comp Biochem Physiol 22:415–425PubMedCrossRefGoogle Scholar
  79. 79.
    Breckenridge WC, Marai L, Kuksis A (1969) Triglyceride structure of human milk fat. Can J Biochem 47:761–769PubMedCrossRefGoogle Scholar
  80. 80.
    Freeman CP, Jack EL, Smith LM (1965) Intramolecular fatty acid distribution in the milk fat triglycerides of several species. J Dairy Sci 48:853–858PubMedGoogle Scholar
  81. 81.
    Moreau H, Laugier R, Gargouri Y, Ferrato F, Verger R (1988) Human preduodenal lipase is entirely of gastric fundic origin. Gastroenterology 95:1221–1226PubMedGoogle Scholar
  82. 82.
    Carriere F, Barrowman JA, Verger R, Laugier R (1993) Secretion and contribution to lipolysis of gastric and pancreatic lipases during a test meal in humans. Gastroenterology 105:876–888PubMedGoogle Scholar
  83. 83.
    Scheele G, Bartelt D, Bieger W (1981) Characterization of human exocrine pancreatic proteins by two-dimensional isoelectric focusing/sodium dodecyl sulfate gel electrophoresis. Gastroenterology 80:461–473PubMedGoogle Scholar
  84. 84.
    DiMagno EP, Go VL, Summerskill WH (1973) Relations between pancreatic enzyme ouputs and malabsorption in severe pancreatic insufficiency. N Engl J Med 288:813–815PubMedCrossRefGoogle Scholar
  85. 85.
    Bodmer MW, Angal S, Yarranton GT, Harris TJ, Lyons A, King DJ, et al. (1987) Molecular cloning of a human gastric lipase and expression of the enzyme in yeast. Biochim Biophys Acta 909:237–244PubMedGoogle Scholar
  86. 86.
    Roussel A, Canaan S, Egloff MP, Riviere M, Dupuis L, Verger R, et al. (1999) Crystal structure of human gastric lipase and model of lysosomal acid lipase, two lipolytic enzymes of medical interest. J Biol Chem 274:16995–17002PubMedCrossRefGoogle Scholar
  87. 87.
    Paltauf F, Wagner E (1976) Stereospecificity of lipases. Enzymatic hydrolysis of enantiomeric alkyldiacyl- and dialkylacylglycerols by lipoprotein lipase. Biochim Biophys Acta 431:359–362PubMedGoogle Scholar
  88. 88.
    Gargouri Y, Moreau H, Verger R (1989) Gastric lipases: biochemical and physiological studies. Biochim Biophys Acta 1006:255–271PubMedGoogle Scholar
  89. 89.
    Pafumi Y, Lairon D, de la Porte PL, Juhel C, Storch J, Hamosh M, et al. (2002) Mechanisms of inhibition of triacylglycerol hydrolysis by human gastric lipase. J Biol Chem 277:28070–28079PubMedCrossRefGoogle Scholar
  90. 90.
    Armand M, Borel P, Dubois C, Senft M, Peyrot J, Salducci J, et al. (1968) Characterization of emulsions and lipolysis of dietary lipids in the human stomach. Am J Physiol 266:G372–381Google Scholar
  91. 91.
    Armand M, Borel P, Pasquier B, Dubois C, Senft M, Andre M, et al. (1996) Physicochemical characteristics of emulsions during fat digestion in human stomach and duodenum. Am J Physiol 271:G172–183PubMedGoogle Scholar
  92. 92.
    Armand M, Pasquier B, Andre M, Borel P, Senft M, Peyrot J, et al. (1999) Digestion and absorption of 2 fat emulsions with different droplet sizes in the human digestive tract. Am J Clin Nutr 70:1096–1106PubMedGoogle Scholar
  93. 93.
    Gargouri Y, Pieroni G, Riviere C, Lowe PA, Sauniere JF, Sarda L, et al. (1986) Importance of human gastric lipase for intestinal lipolysis: an in vitro study. Biochim Biophys Acta 879:419–423PubMedGoogle Scholar
  94. 94.
    Borel P, Armand M, Pasquier B, Senft M, Dutot G, Melin C, et al. (1968) Digestion and absorption of tube-feeding emulsions with different droplet sizes and compositions in the rat. JPEN J Parenter Enteral Nutr 18:534–543Google Scholar
  95. 95.
    Armand M, Hamosh M, Mehta NR, Angelus PA, Philpott JR, Henderson TR, et al. (1996) Effect of human milk or formula on gastric function and fat digestion in the premature infant. Pediatr Res 40:429–437PubMedCrossRefGoogle Scholar
  96. 96.
    Abrams CK, Hamosh M, Dutta SK, Hubbard VS, Hamosh P (1987) Role of nonpancreatic lipolytic activity in exocrine pancreatic insufficiency. Gastroenterology 92:125–129PubMedGoogle Scholar
  97. 97.
    Abrams CK, Hamosh M, Hubbard VS, Dutta SK, Hamosh P (1984) Lingual lipase in cystic fibrosis. Quantitation of enzyme activity in the upper small intestine of patients with exocrine pancreatic insufficiency. J Clin Invest 73:374–382PubMedGoogle Scholar
  98. 98.
    Roulet M, Weber AM, Paradis Y, Roy CC, Chartrand L, Lasalle R, et al. (1980) Gastric emptying and lingual lipase activity in cystic fibrosis. Pediatr Res 14:1360–1362PubMedCrossRefGoogle Scholar
  99. 99.
    Roy CC, Roulet M, Lefebvre D, Chartrand L, Lepage G, Fournier LA (1979) The role of gastric lipolysis on fat absorption and bile acid metabolism in the rat. Lipids 14:811–15PubMedCrossRefGoogle Scholar
  100. 100.
    Carriere F, Grandval P, Renou C, Palomba A, Prieri F, Giallo J, et al. (2005) Quantitative study of digestive enzyme secretion and gastrointestinal lipolysis in chronic pancreatitis. Clin Gastroenterol Hepatol 3:28–38PubMedCrossRefGoogle Scholar
  101. 101.
    Sbarra V, Mas E, Henderson TR, Hamosh M, Lombardo D, Hamosh P (1996) Digestive lipases of the newborn ferret: compensatory role of milk bile salt-dependent lipase. Pediatr Res 40:263–268PubMedCrossRefGoogle Scholar
  102. 102.
    Staggers JE, Fernando-Warnakulasuriya GJP, Wells MA (1981) Studies on fat digestion, absorption, and transport in the suckling rat. II. triacylglycerols: molecular species, sterospecific analysis, and specificity of hydrolysis by lingual lipase. J Lipid Res 22:675–679PubMedGoogle Scholar
  103. 103.
    Gregory P, Tabeling R, Kamphues J (1999) Growth and digestion in pancreatic duct ligated pigs. In: Pierzynowski S, Zabielski R (eds) Biology of the pancreas in growing animals. Elsevier Science, New York, pp 381–393Google Scholar
  104. 104.
    Tabeling R, Gregory P, Kamphues J (1999) Studies on nutrient digestibilities (precaecal and total) in pancreatic duct ligated pigs and the effects of enzyme substitution. Journal of Animal Physiology and Animal Nutrition 82:251–263CrossRefGoogle Scholar
  105. 105.
    Lowe ME (2002) The triglyceride lipases of the pancreas. J Lipid Res 43:2007–2016PubMedCrossRefGoogle Scholar
  106. 106.
    Lowe ME, Rosenblum JL, Strauss AW (1989) Cloning and characterization of human pancreatic lipase cDNA. J Biol Chem 264:20042–20048PubMedGoogle Scholar
  107. 107.
    Payne RM, Sims HF, Jennens ML, Lowe ME (1968) Rat pancreatic lipase and two related proteins: enzymatic properties and mRNA expression during development. Am J Physiol 266:G914–G921Google Scholar
  108. 108.
    Lebenthal E, Lee PC (1980) Development of functional response in human exocrine pancreas. Pediatrics 66:556–560PubMedGoogle Scholar
  109. 109.
    Yang Y, Lowe ME (1998) Human pancreatic triglyceride lipase expressed in yeast cells: purification and characterization. Protein Expr Purif 13:36–40PubMedCrossRefGoogle Scholar
  110. 110.
    De Caro A, Figarella C, Amic J, Michel R, Guy O (1977) Human pancreatic lipase: A glycoprotein. Biochim Biophys Acta 490:411–419PubMedGoogle Scholar
  111. 111.
    Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, et al. (1992) The alpha/beta hydrolase fold. Protein Eng 5:197–211PubMedCrossRefGoogle Scholar
  112. 112.
    Winkler FK, D’Arcy A, Hunziker W (1990) Structure of human pancreatic lipase. Nature 343:771–774PubMedCrossRefGoogle Scholar
  113. 113.
    Lowe ME (1992) The catalytic site residues and interfacial binding of human pancreatic lipase. J Biol Chem 267:17069–17073PubMedGoogle Scholar
  114. 114.
    van Tilbeurgh H, Egloff MP, Martinez C, Rugani N, Verger R, Cambillau C (1993) Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by x-ray crystallography. Nature 362:814–820PubMedCrossRefGoogle Scholar
  115. 115.
    Andersson L, Carriere F, Lowe ME, Nilsson A, Verger R (1996) Pancreatic lipase-related protein 2 but not classical pancreatic lipase hydrolyzes galactolipids. Biochim Biophys Acta 1302:236–240PubMedGoogle Scholar
  116. 116.
    Verger R (1984) Pancreatic lipase. In: Borgstrom B, Brockman HL (eds) Lipases, 1st edn. Elsevier, Amsterdam, pp 84–150Google Scholar
  117. 117.
    van Bennekum AM, Fisher EA, Blaner WS, Harrison EH (2000) Hydrolysis of retinyl esters by pancreatic triglyceride lipase. Biochemistry 39:4900–4906PubMedCrossRefGoogle Scholar
  118. 118.
    Yang LY, Kuksis A, Myher JJ (1990) Lipolysis of menhaden oil triacylglycerols and the corresponding fatty acid alkyl esters by pancreatic lipase in vitro: a reexamination. J Lipid Res 31:137–147PubMedGoogle Scholar
  119. 119.
    Borgstrom B, Erlanson-Albertsson C (1984) Pancreatic colipase. In: Borgstrom B, Brockman HL (eds) Lipases, 1st edn. Elsevier, Amsterdam, pp 152–183Google Scholar
  120. 120.
    Sternby B, Borgstrom B (1984) One-step purification of procolipase from human pancreatic juice by immobilized antibodies against human colipase. Biochim Biophys Acta 786:109–112PubMedGoogle Scholar
  121. 121.
    Lowe ME, Rosenblum JL, McEwen P, Strauss AW (1990) Cloning and characterization of the human colipase cDNA. Biochemistry 29:823–828PubMedCrossRefGoogle Scholar
  122. 122.
    van Tilbeurgh H, Gargouri Y, Dezan C, Egloff MP, Nesa MP, Ruganie N, et al. (1993) Crystallization of pancreatic procolipase and of its complex with pancreatic lipase. J Mol Biol 229:552–554PubMedCrossRefGoogle Scholar
  123. 123.
    Figarella C, De Caro A, Leupold D, Poley JR (1980) Congenital pancreatic lipase deficiency. J Pediatr 96:412–416PubMedCrossRefGoogle Scholar
  124. 124.
    Hegele RA, Ramdath DD, Ban MR, Carruthers MN, Carrington CV, Cao H (2001) Polymorphisms in PNLIP, encoding pancreatic lipase, and associations with metabolic traits. J Hum Genet 46:320–324PubMedCrossRefGoogle Scholar
  125. 125.
    Carriere F, Renou C, Lopez V, De Caro J, Ferrato F, Lengsfeld H, et al. (2000) The specific activities of human digestive lipases measured from the in vivo and in vitro lipolysis of test meals. Gastroenterology 119:1689–1660CrossRefGoogle Scholar
  126. 126.
    Hildebrand H, Borgstrom B, Bekassy A, Erlanson-Albertsson C, Helin A (1982) Isolated colipase deficiency in two brothers. Gut 23:243–246PubMedCrossRefGoogle Scholar
  127. 127.
    Huggins KW, Camarota LM, Howles PN, Hui DY (2003) Pancreatic triglyceride lipase deficiency minimally affects dietary fat absorption but dramatically decreases dietary cholesterol absorption in mice. J Biol Chem 278:42899–42905PubMedCrossRefGoogle Scholar
  128. 128.
    Sebban-Kreuzer C, Ayvazian L, Juhel C, Salles JP, Chapus C, Kerfelec B (2003) Inhibitory effect of the pancreatic lipase C-terminal domain on intestinal lipolysis in rats fed a high-fat diet: chronic study. Int J Obes Relat Metab Disord 27:319–325PubMedCrossRefGoogle Scholar
  129. 129.
    Ayvazian L, Kerfelec B, Granon S, Foglizzo E, Crenon I, Dubois C, et al. (2001) The lipase C-terminal domain. A novel unusual inhibitor of pancreatic lipase activity. J Biol Chem 276:14014–14018PubMedGoogle Scholar
  130. 130.
    D’Agostino D, Cordle RA, Kullman J, Erlanson-Albertsson C, Muglia LJ, Lowe ME (2002) Decreased postnatal survival and altered body weight regulation in procolipase deficient mice. J Biol Chem 277:7170–7177PubMedCrossRefGoogle Scholar
  131. 131.
    Hide WA, Chan L, Li W-H (1992) Structure and evolution of the lipase superfamily. J Lipid Res 33:167–178PubMedGoogle Scholar
  132. 132.
    Yang Y, Sanchez D, Figarella C, Lowe ME (2000) Discoordinate expression of pancreatic lipase and two related proteins in the human fetal pancreas. Pediatr Res 47:184–188PubMedCrossRefGoogle Scholar
  133. 133.
    De Caro J, Sias B, Grandval P, Ferrato F, Halimi H, Carriere F, et al. (2004) Characterization of pancreatic lipase-related protein 2 isolated from human pancreatic juice. Biochim Biophys Acta 1701:89–99PubMedGoogle Scholar
  134. 134.
    De Caro J, Carriere F, Barboni P, Giller T, Verger R, De Caro A (1998) Pancreatic lipase-related protein 1 (PLRP1) is present in the pancreatic juice of several species. Biochim Biophys Acta 1387:331–341Google Scholar
  135. 135.
    Giller T, Buchwald P, Blum-Kaelin D, Hunziker W (1992) Two novel human pancreatic lipase related proteins, hPLRP1 and hPLRP2: differences in colipase dependency and in lipase activity. J Biol Chem 267:16509–16516PubMedGoogle Scholar
  136. 136.
    Roussel A, Yang Y, Ferrato F, Verger R, Cambillau C, Lowe M (1998) Structure and activity of rat pancreatic lipase-related protein 2. J Biol Chem 273:32121–32128PubMedCrossRefGoogle Scholar
  137. 137.
    Roussel A, deCaro J, Bezzine S, Gastinel L, de Caro A, Carriere F, et al. (1998) Reactivation of the totally inactive pancreatic lipase RP1 by structure-predicted point mutations. Proteins 32:523–531PubMedCrossRefGoogle Scholar
  138. 138.
    Crenon I, Foglizzo E, Kerfelec B, Verine A, Pignol D, Hermoso J, et al. (1998) Pancreatic lipase-related protein type I: a specialized lipase or an inactive enzyme. Protein Eng 11:135–142PubMedCrossRefGoogle Scholar
  139. 139.
    Sias B, Ferrato F, Grandval P, Lafont D, Boullanger P, De Caro A, et al. (2004) Human pancreatic lipase-related protein 2 is a galactolipase. Biochemistry 43:10138–10148PubMedCrossRefGoogle Scholar
  140. 140.
    Gronborg M, Bunkenborg J, Kristiansen TZ, Jensen ON, Yeo CJ, Hruban RH, et al. (2004) Comprehensive proteomic analysis of human pancreatic juice. J Proteome Res 3:1042–1055PubMedCrossRefGoogle Scholar
  141. 141.
    Andersson L, Bratt C, Arnoldsson KC, Herslof B, Olsson NU, Sternby B, et al. (1995) Hydrolysis of galactolipids by human pancreatic lipolytic enzymes and duodenal contents. J Lipid Res 36:1392–1400PubMedGoogle Scholar
  142. 142.
    Lowe ME, Kaplan MH, Jackson-Grusby L, D’Agostino D, Grusby MJ (1998) Decreased neonatal dietary fat absorption and T cell cytotoxicity in pancreatic lipase-related protein 2-deficient mice. J Biol Chem 273:31215–31221PubMedCrossRefGoogle Scholar
  143. 143.
    D’Agostino D, Lowe ME (2004) Pancreatic lipase-related protein 2 is the major colipase-dependent pancreatic lipase in suckling mice. J Nutr 134:132–134PubMedGoogle Scholar
  144. 144.
    Reue K, Zambaux J, Wong H, Lee G, Leete TH, Ronk M, et al. (1991) cDNA cloning of carboxyl ester lipase from human pancreas reveals a unique proline-rich repeat unit. J Lipid Res 32:267–276PubMedGoogle Scholar
  145. 145.
    Hernell O, Olivecrona T (1974) Human milk lipases. I. Serum-stimulated lipase. J Lipid Res 15:367–374PubMedGoogle Scholar
  146. 146.
    Hernell O, Olivecrona T (1974) Human milk lipases. II. Bile salt-stimulated lipase. Biochim Biophys Acta 369:234–244PubMedGoogle Scholar
  147. 147.
    Baba T, Downs D, Jackson KW, Tang J, Wang CS (1991) Structure of human milk bile salt activated lipase. Biochemistry 30:500–510PubMedCrossRefGoogle Scholar
  148. 148.
    Nilsson J, Blackberg L, Carlsson P, Enerback S, Hernell O, Bjursell G (1990) cDNA cloning of human-milk bile-salt-stimulated lipase and evidence for its identity to pancreatic carboxylic ester hydrolase. Eur J Biochem 192:543–550PubMedCrossRefGoogle Scholar
  149. 149.
    Moore SA, Kingston RL, Loomes KM, Hernell O, Blackberg L, Baker HM, et al. (2001) The structure of truncated recombinant human bile salt-stimulated lipase reveals bile salt-independent conformational flexibility at the active-site loop and provides insights into heparin binding. J Mol Biol 312:511–523PubMedCrossRefGoogle Scholar
  150. 150.
    Chen Q, Blackberg L, Nilsson A, Sternby B, Hernell O (1968) Digestion of triacylglycerols containing long-chain polyenoic fatty acids in vitro by colipase-dependent pancreatic lipase and human milk bile salt-stimulated lipase. Biochim Biophys Acta 1210:239–243Google Scholar
  151. 151.
    Chen Q, Sternby B, Nilsson A (1989) Hydrolysis of triacylglycerol arachidonic and linoleic acid ester bonds by human pancreatic lipase and carboxyl ester lipase. Biochim Biophys Acta 1004:372–385PubMedGoogle Scholar
  152. 152.
    Hernell O, Blackberg L, Chen Q, Sternby B, Nilsson A (1993) Does the bile salt-stimulated lipase of human milk have a role in the use of milk long-chain polyunsaturated fatty acids? J Pediatr Gastroenterol Nutr 16:426–431PubMedCrossRefGoogle Scholar
  153. 153.
    Williamson S, Finucane E, Ellis H, Gamsu HR (1978) Effect of heat treatment of human milk on absorption of nitrogen, fat, sodium, calcium, and phosphorus by preterm infants. Arch Dis Child 53:555–563PubMedGoogle Scholar
  154. 154.
    Alemi B, Hamosh M, Scanlon JW, Salzman-Mann C, Hamosh P (1981) Fat digestion in very low-birth-weight infants: effect of addition of human milk to low-birth-weight formula. Pediatrics 68:484–489PubMedGoogle Scholar
  155. 155.
    Howles PN, Stemmerman GN, Fenoglio-Preiser CM, Hui DY (1999) Carboxyl ester lipase activity in milk prevents fat-derived intestinal injury in neonatal mice. Am J Physiol 277:G653–G661PubMedGoogle Scholar
  156. 156.
    Weng W, Li L, van Bennekum AM, Potter SH, Harrison EH, Blaner WS, et al. (1999) Intestinal absorption of dietary cholesteryl ester is decreased but retinyl ester absorption is normal in carboxyl ester lipase knockout mice. Biochemistry 38:4143–4149PubMedCrossRefGoogle Scholar
  157. 157.
    Lombardo D (2001) Bile salt-dependent lipase: its pathophysiological implications. Biochim Biophys Acta 1533:1–28PubMedGoogle Scholar
  158. 158.
    Kirby RJ, Zheng S, Tso P, Howles PN, Hui DY (2002) Bile salt-stimulated carboxyl ester lipase influences lipoprotein assembly and secretion in intestine. A process mediated via ceramide hydrolysis. J Biol Chem 277:4104–4109PubMedCrossRefGoogle Scholar
  159. 159.
    Figarella C, Clemente F, Guy O (1971) A zymogen of phospholipase A in human pancreatic juice. Biochim Biophys Acta 227:213–217PubMedGoogle Scholar
  160. 160.
    Kozumplik V, Staffa F, Hoffmann GE (1989) Purification of pancreatic phospholipase A2 from human duodenal juice. Biochim Biophys Acta 1002:395–397PubMedGoogle Scholar
  161. 161.
    Seilhamer JJ, Randall TL, Yamanaka M, Johnson LK (1986) Pancreatic phospholipase A2: isolation of the human gene and cDNAs from porcine pancreas and human lung. DNA 5:519–527PubMedGoogle Scholar
  162. 162.
    Chen A, Innis S (2004) Assessment of phospholipid malabsorption by quantification of fecal phospholipid. J Pediatr Gastroenterol Nutr 39:85–91PubMedCrossRefGoogle Scholar
  163. 163.
    Richmond BL, Boileau AC, Zheng S, Huggins KW, Granholm NA, Tso P, et al. (2001) Compensatory phospholipid digestion is required for cholesterol absorption in pancreatic phospholipase A(2)-deficient mice. Gastroenterology 120:1193–1202PubMedCrossRefGoogle Scholar
  164. 164.
    Borgstrom B (1980) Importance of phospholipids, pancreatic phospholipase A2, and fatty acid for the digestion of dietary fat: in vitro experiments with the porcine enzymes. Gastroenterology 78:954–962PubMedGoogle Scholar
  165. 165.
    Borgstrom B, Erlanson-Albertsson C (1982) Hydrolysis of milk fat globules by pancreatic lipase. Role of colipase, phospholipase A2, and bile salts. J Clin Invest 70:30–32PubMedCrossRefGoogle Scholar
  166. 166.
    Blackberg L, Hernell O, Olivecrona T (1981) Hydrolysis of human milk fat globules by pancreatic lipase. Role of colipase, phospholipase A2, and bile salts. Journal of Clinical Investigation 67:1748–1752PubMedGoogle Scholar
  167. 167.
    Bernback S, Blackberg L, Hernell O (1990) The complete digestion of human milk triacylglycerol in vitro requires gastric lipase, pancreatic colipase-dependent lipase, and bile salt-stimulated lipase. Journal of Clinical Investigation 85:1221–1226PubMedGoogle Scholar
  168. 168.
    Caspary WF (1992) Physiology and pathophysiology of intestinal absorption. Am J Clin Nutr 55(1 Suppl):299S–308SPubMedGoogle Scholar
  169. 169.
    Greaves JP, Hollingsworth DF (1964) Changes in the pattern of carbohydrate consumption in Britain. Proc Nutr Soc 23:136–143PubMedCrossRefGoogle Scholar
  170. 170.
    Nishide T, Emi M, Nakamura Y, Matsubara K (1984) Corrected sequences of cDNAs for human salivary and pancreatic alpha-amylases [corrected]. Gene 28:263–270PubMedCrossRefGoogle Scholar
  171. 171.
    Stiefel DJ, Keller PJ (1973) Preparation and some properties of human pancreatic amylase including a comparison with human parotid amylase. Biochim Biophys Acta 302:345–361PubMedGoogle Scholar
  172. 172.
    Buisson G, Duee E, Haser R, Payan F (1987) Three dimensional structure of porcine pancreatic alpha-amylase at 2.9 A resolution. Role of calcium in structure and activity. EMBO J 6:3909–3916PubMedGoogle Scholar
  173. 173.
    Seigner C, Prodanov E, Marchis-Mouren G (1987) The determination of subsite binding energies of porcine pancreatic alpha-amylase by comparing hydrolytic activity towards substrates. Biochim Biophys Acta 913:200–209PubMedGoogle Scholar
  174. 174.
    Robyt JF, French D (1970) The action pattern of porcine pancreatic alpha-amylase in relationship to the substrate binding site of the enzyme. J Biol Chem 245:3917–3927PubMedGoogle Scholar
  175. 175.
    Robyt JF, French D (1970) Multiple attack and polarity of action of porcine pancreatic alpha-amylase. Arch Biochem Biophys 138:662–670PubMedCrossRefGoogle Scholar
  176. 176.
    Saito N, Horiuchi T, Yoshida M, Imai T (1979) Action of human pancreatic and salivary alpha-amylases on maltooligosaccharides: evaluation of kinetic parameters. Clin Chim Acta 97:253–260PubMedCrossRefGoogle Scholar
  177. 177.
    Chan Y, Braun PJ, French D, Robyt JF (1984) Porcine pancreatic alpha-amylase hydrolysis of hydroxyethylated amylose and specificity of subsite binding. Biochemistry 23:5795–5800PubMedCrossRefGoogle Scholar
  178. 178.
    Braun PJ, French D, Robyt JF (1985) Porcine-pancreatic alpha amylase hydrolysis of substrates containing 6-deoxy-D-glucose and 6-deoxy-6-fluoro-D-glucose and the specificity of subsite binding. Carbohydr Res 143:107–116PubMedCrossRefGoogle Scholar
  179. 179.
    Braun PJ, French D, Robyt JF (1985) The effect of substrate modification on porcine pancreatic alpha-amylase subsite binding: hydrolysis of substrates containing 2-deoxy-D-glucose and 2-amino-2-deoxy-D-glucose. Arch Biochem Biophys 242:231–239PubMedCrossRefGoogle Scholar
  180. 180.
    Braun PJ, French D, Robyt JF (1985) The effect of substrate modification on binding of porcine pancreatic alpha amylase: hydrolysis of modified amylose containing D-allose residues. Carbohydr Res 141:265–271PubMedCrossRefGoogle Scholar
  181. 181.
    Alpers DH (1994) Digestion and absorption of carbohydrates and proteins. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Raven Press, New York, pp 1723–1749Google Scholar
  182. 182.
    Ladas SD, Giorgiotis K, Raptis SA (1993) Complex carbohydrate malabsorption in exocrine pancreatic insufficiency. Gut 34:984–987PubMedCrossRefGoogle Scholar
  183. 183.
    Layer P, Zinsmeister AR, DiMagno EP (1986) Effects of decreasing intraluminal amylase activity on starch digestion and postprandial gastrointestinal function in humans. Gastroenterology 91:41–48PubMedGoogle Scholar
  184. 184.
    Hiele M, Ghoos Y, Rutgeerts P, Vantrappen G (1989) Starch digestion in normal subjects and patients with pancreatic disease, using a 13CO2 breath test. Gastroenterology 96:503–509PubMedGoogle Scholar
  185. 185.
    Lankisch PG, Otto J (1986) Salivary isoamylase in duodenal aspirates. Dig Dis Sci 31:1299–1302PubMedCrossRefGoogle Scholar
  186. 186.
    Sjolund K, Haggmark A, Ihse I, Skude G, Karnstrom U, Wikander M (1991) Selective deficiency of pancreatic amylase. Gut 32:546–548PubMedCrossRefGoogle Scholar
  187. 187.
    Lowe CU, May CD (1951) Selective pancreatic deficiency, absent amylase, diminished trypsin, and normal lipase. AMA Am J Dis Child 82:459–464PubMedGoogle Scholar
  188. 188.
    Mehta DI, Wang HH, Akins RE, Wang L, Proujansky R (2000) Isolated pancreatic amylase deficiency: probable error in maturation. J Pediatr 136:844–846PubMedCrossRefGoogle Scholar
  189. 189.
    Walters MP, Littlewood JM (1998) Faecal bile acid and dietary residue excretion in cystic fibrosis: age group variations. J Pediatr Gastroenterol Nutr 27:296–300PubMedCrossRefGoogle Scholar
  190. 190.
    Nordgaard I, Rumessen JJ, Gudmand-Hoyer E (1992) Assimilation of wheat starch in patients with chronic pancreatitis. Positive effect of enzyme replacement. Scand J Gastroenterol 27:412–416PubMedGoogle Scholar
  191. 191.
    Frederiksen HJ, Mogensen NB, Magid E (1985) The clinical significance of salivary amylase in duodenal aspirates in evaluation of exocrine pancreas function. Scand J Gastroenterol 20:1046–1048PubMedGoogle Scholar
  192. 192.
    Ramasubbu N, Paloth V, Luo Y, Brayer GD, Levine MJ (1996) Structure of human salivary alpha-amylase at 1.6 A resolution: implications for its role in the oral cavity. Acta Crystallogr D Biol Crystallogr 52:435–446PubMedCrossRefGoogle Scholar
  193. 193.
    Lott JA, Lu CJ (1991) Lipase isoforms and amylase isoenzymes: assays and application in the diagnosis of acute pancreatitis. Clin Chem 37:361–368PubMedGoogle Scholar
  194. 194.
    Karn RC (1978) The comparative biochemistry, physiology, and genetics of animal alpha-amylases. Adv Comp Physiol Biochem 7:1–103PubMedGoogle Scholar
  195. 195.
    Hoebler C, Karinthi A, Devaux MF, Guillon F, Gallant DJ, Bouchet B, et al. (1998) Physical and chemical transformations of cereal food during oral digestion in human subjects. Br J Nutr 80:429–436PubMedCrossRefGoogle Scholar
  196. 196.
    Murray RD, Kerzner B, Sloan HR, McClung HJ, Gilbert M, Ailabouni A (1986) The contribution of salivary amylase to glucose polymer hydrolysis in premature infants. Pediatr Res 20:186–191PubMedCrossRefGoogle Scholar
  197. 197.
    Kurahashi M, Inomata K (1989) Role of parotid amylase in starch digestion in the gastro-intestinal tracts of diabetic rats. J Dent Res 68:1366–1369PubMedGoogle Scholar
  198. 198.
    Kurahashi M, Inomata K (1999) Effects of dietary consistency and water content on parotid amylase secretion and gastric starch digestion in rats. Arch Oral Biol 44:1013–1019PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Departments of Medicine, Cell Biology and Physiology, and Human GeneticsUniversity of PittsburghPittsburghUSA
  2. 2.Pediatrics and Molecular Genetics and BiochemistryUniversity of PittsburghPittsburghUSA

Personalised recommendations